Classification of binary self-orthogonal codes of lengths from 16 to 20 and its application

被引:0
作者
Minjia Shi
Na Liu
Jon-Lark Kim
机构
[1] Anhui University,Key Laboratory of Intelligent Computing Signal Processing, Ministry of Education, School of Mathematical Sciences
[2] Anhui University,School of Mathematical Sciences
[3] Sogang University,Department of Mathematics
来源
Journal of Applied Mathematics and Computing | 2023年 / 69卷
关键词
DNA codes; Finite ring; Self-orthogonal codes; Primary 94 B05;
D O I
暂无
中图分类号
学科分类号
摘要
Kim and Ohk (2022) showed that binary self-orthogonal [n, k] codes for various dimensions k can be useful for the construction of DNA codes based on quasi self-dual codes over a noncommutative nonunital ring E with four elements. However, there is few classification of binary self-orthogonal codes with dimension ≥6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ge 6$$\end{document}. In this paper, we complete the classification of binary self-orthogonal codes of lengths from 16 to 20 with dimension ≥6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ge 6$$\end{document}. Hence, our classification extends a result of Kim and Ohk (2022).
引用
收藏
页码:1173 / 1203
页数:30
相关论文
共 62 条
[1]  
Alahmadi A(2021)Type VI codes over a non-unital ring Appl. Alge. in Enginee., Commun. and Comput 32 217-228
[2]  
Altassan A(1999)Type II codes, even unimodular lattices, and invariant rings IEEE Trans. Inf. Theory. 45 1194-1205
[3]  
Basaffar W(2002)An enumeration of binary self-dual codes of length 32 Designs Codes Crypt. 26 61-86
[4]  
Bonnecaze A(1997)The Magma algebra system I: The user language J. Symbolic Comput. 24 235-265
[5]  
Shoaib H(2006)Classification of optimal binary self-orthogonal codes J. Comb. Math. Comb. Comput. 59 33-87
[6]  
Solé P(1980)On the enumeration of self-dual codes J. Combin. Theory Ser. A. 28 26-53
[7]  
Bannai E(1992)The binary self-dual codes of length up to 32: A revised enumeration J. Combin. Theory Ser. A. 60 183-195
[8]  
Dougherty ST(1998)Quantum error correction via codes over IEEE Trans. Inf. Theory. 44 1369-1387
[9]  
Harada M(2009)Asymptotic bound on binary self-orthogonal codes Sci. China Series A: Math. 52 631-638
[10]  
Oura M(1993)Classification of finite rings of order Math. Magaz. 66 248-252