Unified error analysis of discontinuous Galerkin methods for parabolic obstacle problem

被引:0
作者
Papri Majumder
机构
[1] Indian Institute of Technology Delhi,Department of Mathematics
来源
Applications of Mathematics | 2021年 / 66卷
关键词
finite element; discontinuous Galerkin method; parabolic obstacle problem; 65N30; 65N15;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce and study various discontinuous Galerkin (DG) finite element approximations for a parabolic variational inequality associated with a general obstacle problem in ℝd (d = 2, 3). For the fully-discrete DG scheme, we employ a piecewise linear finite element space for spatial discretization, whereas the time discretization is carried out with the implicit backward Euler method. We present a unified error analysis for all well known symmetric and non-symmetric DG fully discrete schemes, and derive error estimate of optimal order O(h+Δt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal O}(h + \Delta t)$$\end{document} in an energy norm. Moreover, the analysis is performed without any assumptions on the speed of propagation of the free boundary and only the realistic regularity ut∈ℒ2(0,T;ℒ2(Ω))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u_t} \in {{\cal L}^2}(0,T;{{\cal L}^2}(\Omega ))$$\end{document} is assumed. Further, we present some numerical experiments to illustrate the performance of the proposed methods.
引用
收藏
页码:673 / 699
页数:26
相关论文
共 83 条
[1]  
Arnold D N(1982)An interior penalty finite element method with discontinuous elements SIAM J. Numer. Anal. 19 742-760
[2]  
Arnold D N(2002)Unified analysis of discontinuous Galerkin methods for elliptic problems SIAM J. Numer. Anal. 39 1749-1779
[3]  
Brezzi F(1973)Nonconforming elements in the finite element method with penalty SIAM J. Numer. Anal. 10 863-875
[4]  
Cockburn B(2014)hp-adaptive IPDG/TDG-FEM for parabolic obstacle problems Comput. Math. Appl. 67 712-731
[5]  
Marini L D(1977)An error estimate for the truncation method for the solution of parabolic obstacle variational inequalities Math. Comput. 31 619-628
[6]  
Babuška I(2008)A weakly over-penalized symmetric interior penalty method ETNA, Electron. Tran. Numer. Anal. 30 107-127
[7]  
Zlámal M(1972)Problèmes unilatéraux J. Math. Pures Appl. (9) 51 1-168
[8]  
Banz L(2000)Discontinuous Galerkin approximations for elliptic problems Numer. Methods Partial Differ. Equations 16 365-378
[9]  
Stephan E P(2000)An a priori error analysis of the local discontinuous Galerkin method for elliptic problems SIAM J. Numer. Anal. 38 1676-1706
[10]  
Berger A E(2012)Theory of the space-time discontinuous Galerkin method for nonstationary parabolic problems with nonlinear convection and diffusion SIAM J. Numer. Anal. 50 1181-1206