An iterative algorithm for sparse and constrained recovery with applications to divergence-free current reconstructions in magneto-encephalography

被引:0
作者
Ignace Loris
Caroline Verhoeven
机构
[1] Université Libre de Bruxelles,
来源
Computational Optimization and Applications | 2013年 / 54卷
关键词
Inverse problems; Sparsity; Convex optimization; Iterative algorithm; Wavelets; Magneto-encephalography;
D O I
暂无
中图分类号
学科分类号
摘要
We propose an iterative algorithm for the minimization of a ℓ1-norm penalized least squares functional, under additional linear constraints. The algorithm is fully explicit: it uses only matrix multiplications with the three matrices present in the problem (in the linear constraint, in the data misfit part and in the penalty term of the functional). None of the three matrices must be invertible. Convergence is proven in a finite-dimensional setting. We apply the algorithm to a synthetic problem in magneto-encephalography where it is used for the reconstruction of divergence-free current densities subject to a sparsity promoting penalty on the wavelet coefficients of the current densities. We discuss the effects of imposing zero divergence and of imposing joint sparsity (of the vector components of the current density) on the current density reconstruction.
引用
收藏
页码:399 / 416
页数:17
相关论文
共 57 条
  • [1] Beck A.(2009)A fast iterative shrinkage-threshold algorithm for linear inverse problems SIAM J. Imaging Sci. 2 183-202
  • [2] Teboulle M.(2011)An alternating extragradient method for total variation-based image restoration from Poisson data Inverse Probl. 27 12267-12272
  • [3] Bonettini S.(2009)Sparse and stable Markowitz portfolios Proc. Natl. Acad. Sci. USA 106 34-81
  • [4] Ruggiero V.(2009)From sparse solutions of systems of equations to sparse modeling of signals and images SIAM Rev. 51 21-30
  • [5] Brodie J.(2008)An introduction to compressive sampling IEEE Signal Process. Mag. 25 33-61
  • [6] Daubechies I.(1998)Atomic decomposition by basis pursuit SIAM J. Sci. Comput. 20 485-560
  • [7] De Mol C.(1992)Biorthogonal bases of compactly supported wavelets Commun. Pure Appl. Math. 45 1413-1457
  • [8] Giannone D.(2004)An iterative thresholding algorithm for linear inverse problems with a sparsity constraint Commun. Pure Appl. Math. 57 1759-1814
  • [9] Loris I.(2001)Magnetoencephalography—a noninvasive brain imaging method with 1 ms time resolution Rep. Prog. Phys. 64 386-395
  • [10] Bruckstein A.M.(2008)Adaptive iterative thresholding algorithms for magnetoencephalography (MEG) J. Comput. Appl. Math. 221 577-613