Tests for injectivity of modules over commutative rings

被引:0
|
作者
Lars Winther Christensen
Srikanth B. Iyengar
机构
[1] Texas Tech University,
[2] University of Utah,undefined
来源
Collectanea Mathematica | 2017年 / 68卷
关键词
Injective module; Injective dimension; Cosupport; 13C11; 13D05;
D O I
暂无
中图分类号
学科分类号
摘要
It is proved that a module M over a commutative noetherian ring R is injective if ExtRi((R/p)p,M)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {Ext}_{R}^{i}((R/{\mathfrak p})_{\mathfrak p},M)=0$$\end{document} holds for every i⩾1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i\geqslant 1$$\end{document} and every prime ideal p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {p}$$\end{document} in R. This leads to the following characterization of injective modules: If F is faithfully flat, then a module M such that HomR(F,M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Hom}}_R(F,M)$$\end{document} is injective and ExtRi(F,M)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Ext}}^i_R(F,M)=0$$\end{document} for all i⩾1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i\geqslant 1$$\end{document} is injective. A limited version of this characterization is also proved for certain non-noetherian rings.
引用
收藏
页码:243 / 250
页数:7
相关论文
共 50 条