Finite Convergence of the Proximal Point Algorithm for Variational Inequality Problems

被引:0
作者
Shin-ya Matsushita
Li Xu
机构
[1] Akita Prefectural University,Department of Electronics and Information Systems
来源
Set-Valued and Variational Analysis | 2013年 / 21卷
关键词
Variational inequality problem; Weak sharp minima; Finite termination; Proximal point algorithm; Banach space; Metric projection; Generalized projection; 49J40; 47J25; 49J53; 47J20; 47H05; 47H04; 90C25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish sufficient conditions for guaranteeing finite termination of an arbitrary algorithm for solving a variational inequality problem in a Banach space. Applying these conditions, it shows that sequences generated by the proximal point algorithm terminate at solutions in a finite number of iterations.
引用
收藏
页码:297 / 309
页数:12
相关论文
共 52 条
[1]  
Bauschke HH(2005)A new proximal point iteration that converges weakly but not in norm Proc. Am. Math. Soc. 133 1829-1835
[2]  
Burke JV(1978)Produits infinis de résolvantes Israel J. Math. 29 329-345
[3]  
Deutsch FR(2001)A proximal point method for the variational inequality problem in Banach spaces SIAM J. Control Optim. 39 1633-1649
[4]  
Hundal HS(2002)Weak sharp minima revisited, part I: basic theory Control Cybern. 31 439-469
[5]  
Vanderwerff JD(1993)Weak sharp minima in mathematical programming SIAM J. Control Optim. 31 1340-1359
[6]  
Brézis H(2003)On uniformly convexity, total convexity and convergence of the proximal point and outer Bregman projection algorithms in Banach spaces J. Convex Anal. 10 35-61
[7]  
Lions P-L(1987)Projected gradient methods for linearly constrained problems Math. Program. 39 93-116
[8]  
Burachik RS(1998)An interior point method with Bregman functions for the variational inequality problem with paramonotone operators Math. Program. 31 373-400
[9]  
Scheimberg S(1999)Coercivity conditions and variational inequalities Math. Program. 86 433-438
[10]  
Burke JV(1991)Finite termination of the proximal point algorithm Math. Program. 50 359-366