Noncommutative Integrable Systems of Hydrodynamic Type

被引:0
作者
Boris A. Kupershmidt
机构
[1] The University of Tennessee Space Institute,
来源
Acta Applicandae Mathematica | 2006年 / 92卷
关键词
integrable systems;
D O I
暂无
中图分类号
学科分类号
摘要
On noncommutative spaces, integrable hierarchies of hydrodynamic type systems (1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$^{st}$\end{document}-order quasilinear PDE’s) do not, in general, exist. Nevertheless, an infinite-component hydrodynamic chain defined below is shown to be integrable. Its modified version is also constructed and it exhibits a new purely noncommutative phenomenon: the number of modified variables is either \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2$\end{document} or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\infty$\end{document}.
引用
收藏
页码:269 / 292
页数:23
相关论文
共 20 条
  • [1] Benney D.J.(1973)Some properties of long nonlinear waves Stud. Appl. Math. L11 45-50
  • [2] Bluman G.W.(1969)The generalized similarity solution of the heat equation J. Math. Mech. 18 1025-1042
  • [3] Cole J.D.(1983)The Hamiltonian formalism of one-dimensional systems of hydrodynamic type and the Bogolyubov–Whitman averaging method Dokl. Akad. Nauk SSSR (Russian) 27 781-785
  • [4] Dubrovin B.A.(1981)Collisionless Boltzmann equations and integrable moment equations Phys. 3 503-511
  • [5] Novikov S.P.(1971)Geometric approach to invariance groups and solution of partial differential systems J. Math. Phys. 12 653-666
  • [6] Gibbons J.(1978)Equations of Long Waves with a free surface. II. Hamiltonian structure and higher equations Funct. Anal. Appl. (Russian) 12 25-37
  • [7] Harrison B.K.(1979)Conservation laws and lax representation of Benney’s long wave equations Phys. Lett., A 74 154-156
  • [8] Estabrook F.B.(1999)Compatible Poisson structures of hydrodynamic type and associativity equations Tr. Mat. Inst. Stekoova (Russian) 225 284-300
  • [9] Kupershmidt B.A.(1992)Hamiltonian systems of hydrodynamic type and constant curvature metrics Phys. Lett., A 166 215-216
  • [10] Manin Yu.I.(2003)Integrable hydrodynamic chains J. Math. Phys. 44 4134-4156