Three-Dimensional Quadrics in Conformal Geometric Algebras and Their Versor Transformations

被引:0
作者
Eckhard Hitzer
机构
[1] International Christian University,
来源
Advances in Applied Clifford Algebras | 2019年 / 29卷
关键词
Clifford algebra; Conformal geometric algebra; Quadrics; Geometric transformations; Versors; Primary 15A66; Secondary 11E88; 65D17; 68U05; 14M17;
D O I
暂无
中图分类号
学科分类号
摘要
This work explains how three dimensional quadrics can be defined by the outer products of conformal geometric algebra points in higher dimensions. These multivector expressions code all types of quadrics in arbitrary scale, location and orientation. Furthermore, a newly modified (compared to Breuils et al. in Adv Appl Clifford Algebras 28(35):1–16, 2018. https://doi.org/10.1007/s00006-018-0851-1) approach now allows not only the use of the standard intersection operations, but also of versor operators (scaling, rotation, translation). The new algebraic form of the theory will be explained in detail.
引用
收藏
相关论文
共 18 条
[1]  
Breuils S(2018)Quadric conformal geometric algebra of Adv. Appl. Clifford Algebras 28 1-16
[2]  
Nozick V(2017)Double conformal geometric algebra Adv. Appl. Clifford Algebras 27 2175-2199
[3]  
Sugimoto A(2014)Conformal geometry for viewpoint change representation Adv. Appl. Clifford Algebras 24 443-463
[4]  
Hitzer E(2009)Carrier method for the general evaluation and control of pose, molecular conformation, tracking, and the like Adv. Appl. Clifford Algebras 19 339-364
[5]  
Easter RB(2018)Geometric algebra for conics Adv. Appl. Clifford Algebras 28 1-21
[6]  
Hitzer E(2016)Clifford Multivector Toolbox (for MATLAB) Advances in Applied Clifford Algebras 27 539-558
[7]  
El Mir G(undefined)undefined undefined undefined undefined-undefined
[8]  
Saint-Jean C(undefined)undefined undefined undefined undefined-undefined
[9]  
Berthier M(undefined)undefined undefined undefined undefined-undefined
[10]  
Hitzer E(undefined)undefined undefined undefined undefined-undefined