Margulis lemma for compact lie groups

被引:0
作者
Marcin Mazur
Xiaochun Rong
Yusheng Wang
机构
[1] Binghamton University,Mathematics Department
[2] Beijing Normal University,Mathematics Department
[3] Rutgers University,Mathematics Department
[4] Peking University,School of Mathematical Sciences
来源
Mathematische Zeitschrift | 2008年 / 258卷
关键词
Fundamental Group; Abelian Subgroup; Closed Subgroup; Identity Component; Minimal Geodesic;
D O I
暂无
中图分类号
学科分类号
摘要
We improve Margulis lemma for a compact connected Lie group G: there is a neighborhood U of the identity such that for any finite subgroup \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma\subset G$$\end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U\cap \Gamma$$\end{document} generates an abelian group. We show that for each n, there exists an integer \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w(n) > 0$$\end{document} , such that if H is a closed subgroup of a compact connected Lie group G of dimension n, then the quotient group, H/H0, has an abelian subgroup of index \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le w(n)$$\end{document} , where H0 is the identity component of H. As an application, we show that the fundamental group of the homogeneous space G/H has an abelian subgroup of index \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le w(n)$$\end{document} . We show this same property for the fundamental groups of almost non-negatively curved n-manifolds whose universal coverings are not collapsed.
引用
收藏
页码:395 / 406
页数:11
相关论文
共 10 条
  • [1] Berger M.(1998)Riemannian geometry during the second half of the twentieth century Jahrbericht. Deutsch. Math.-Verein 100 45-208
  • [2] Cheeger J.(1972)On the structure of complete manifolds of nonneative curvature Ann. of Math 96 413-443
  • [3] Gromoll D.(1992)The fundamental groups of almost non-negatively curved manifolds Ann. of Math 136 253-333
  • [4] Fukaya K.(1994)Isometry groups of singular spaces Math. Z 216 31-44
  • [5] Yamaguchi T.(1978)Almost flat manifolds J. Diff. Geom. 13 231-241
  • [6] Fukaya K.(1984)Post-classification version of Jordan’s theorem on finite linear groups Proc. Natl. Acad. Sci. USA 81 5278-5279
  • [7] Yamaguchi T.(2000)On fundamental groups of manifolds of nonnegative curvature Diff. Geom. Appl. 13 129-165
  • [8] Gromov M.(undefined)undefined undefined undefined undefined-undefined
  • [9] Weisfeiler B.(undefined)undefined undefined undefined undefined-undefined
  • [10] Wilking B.(undefined)undefined undefined undefined undefined-undefined