Placement and orientation of individual DNA shapes on lithographically patterned surfaces

被引:3
作者
Kershner, Ryan J. [1 ]
Bozano, Luisa D. [1 ]
Micheel, Christine M. [1 ]
Hung, Albert M. [1 ]
Fornof, Ann R. [1 ]
Cha, Jennifer N. [1 ]
Rettner, Charles T. [1 ]
Bersani, Marco [1 ]
Frommer, Jane [1 ]
Rothemund, Paul W. K. [2 ]
Wallraff, Gregory M. [1 ]
机构
[1] IBM Almaden Res Ctr, San Jose, CA 95120 USA
[2] CALTECH, Dept Bioengn Comp Sci & Computat & Neural Syst, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
DIAMOND-LIKE CARBON; DEPOSITION; ADSORPTION; ARRAYS; NANOTUBES;
D O I
10.1038/NNANO.2009.220
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Artificial DNA nanostructures(1,2) show promise for the organization of functional materials(3,4) to create nanoelectronic(5) or nano-optical devices. DNA origami, in which a long single strand of DNA is folded into a shape using shorter 'staple strands'(6), can display 6-nm-resolution patterns of binding sites, in principle allowing complex arrangements of carbon nanotubes, silicon nanowires, or quantum dots. However, DNA origami are synthesized in solution and uncontrolled deposition results in random arrangements; this makes it difficult to measure the properties of attached nanodevices or to integrate them with conventionally fabricated microcircuitry. Here we describe the use of electron-beam lithography and dry oxidative etching to create DNA origami-shaped binding sites on technologically useful materials, such as SiO2 and diamond-like carbon. In buffer with similar to 100 mM MgCl2, DNA origami bind with high selectivity and good orientation: 70-95% of sites have individual origami aligned with an angular dispersion (+/- 1 s.d.) as low as +/- 10 degrees (on diamond-like carbon) or +/- 20 degrees (on SiO2).
引用
收藏
页码:557 / 561
页数:5
相关论文
共 33 条
[11]  
HUNG AM, NATURE NANOTEC UNPUB
[12]  
KENNEN K, 2003, SCIENCE, V302, P1380
[13]   Dielectrophoretic trapping of DNA origami [J].
Kuzyk, Anton ;
Yurke, Bernard ;
Toppari, J. Jussi ;
Linko, Veikko ;
Torma, Paivi .
SMALL, 2008, 4 (04) :447-450
[14]   Constructing novel materials with DNA [J].
LaBean, Thom H. ;
Li, Hanying .
NANO TODAY, 2007, 2 (02) :26-35
[15]   DNA-templated self-assembly of metallic nanocomponent arrays on a surface [J].
Le, JD ;
Pinto, Y ;
Seeman, NC ;
Musier-Forsyth, K ;
Taton, TA ;
Kiehl, RA .
NANO LETTERS, 2004, 4 (12) :2343-2347
[16]   Adsorption of metal ions onto hydrophilic silicon surfaces from aqueous solution: Effect of pH [J].
Loewenstein, LM ;
Mertens, PW .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (08) :2841-2847
[17]   Sub-50 nm positioning of organic compounds onto silicon oxide patterns fabricated by local oxidation nanolithography [J].
Losilla, N. S. ;
Oxtoby, N. S. ;
Martinez, J. ;
Garcia, F. ;
Garcia, R. ;
Mas-Torrent, M. ;
Veciana, J. ;
Rovira, C. .
NANOTECHNOLOGY, 2008, 19 (45)
[18]   Nanoelectronics from the bottom up [J].
Lu, Wei ;
Lieber, CharLes M. .
NATURE MATERIALS, 2007, 6 (11) :841-850
[19]   Overcharging, charge reversal: Chemistry or physics? [J].
Lyklema, Johannes .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2006, 291 (1-3) :3-12
[20]   Controlled particle placement through convective and capillary assembly [J].
Malaquin, Laurent ;
Kraus, Tobias ;
Schmid, Heinz ;
Delamarche, Emmanuel ;
Wolf, Heiko .
LANGMUIR, 2007, 23 (23) :11513-11521