Placement and orientation of individual DNA shapes on lithographically patterned surfaces

被引:3
作者
Kershner, Ryan J. [1 ]
Bozano, Luisa D. [1 ]
Micheel, Christine M. [1 ]
Hung, Albert M. [1 ]
Fornof, Ann R. [1 ]
Cha, Jennifer N. [1 ]
Rettner, Charles T. [1 ]
Bersani, Marco [1 ]
Frommer, Jane [1 ]
Rothemund, Paul W. K. [2 ]
Wallraff, Gregory M. [1 ]
机构
[1] IBM Almaden Res Ctr, San Jose, CA 95120 USA
[2] CALTECH, Dept Bioengn Comp Sci & Computat & Neural Syst, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
DIAMOND-LIKE CARBON; DEPOSITION; ADSORPTION; ARRAYS; NANOTUBES;
D O I
10.1038/NNANO.2009.220
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Artificial DNA nanostructures(1,2) show promise for the organization of functional materials(3,4) to create nanoelectronic(5) or nano-optical devices. DNA origami, in which a long single strand of DNA is folded into a shape using shorter 'staple strands'(6), can display 6-nm-resolution patterns of binding sites, in principle allowing complex arrangements of carbon nanotubes, silicon nanowires, or quantum dots. However, DNA origami are synthesized in solution and uncontrolled deposition results in random arrangements; this makes it difficult to measure the properties of attached nanodevices or to integrate them with conventionally fabricated microcircuitry. Here we describe the use of electron-beam lithography and dry oxidative etching to create DNA origami-shaped binding sites on technologically useful materials, such as SiO2 and diamond-like carbon. In buffer with similar to 100 mM MgCl2, DNA origami bind with high selectivity and good orientation: 70-95% of sites have individual origami aligned with an angular dispersion (+/- 1 s.d.) as low as +/- 10 degrees (on diamond-like carbon) or +/- 20 degrees (on SiO2).
引用
收藏
页码:557 / 561
页数:5
相关论文
共 33 条
[1]   DNA-templated assembly and electrode attachment of a conducting silver wire [J].
Braun, E ;
Eichen, Y ;
Sivan, U ;
Ben-Yoseph, G .
NATURE, 1998, 391 (6669) :775-778
[2]   Templated self-assembly of block copolymers: Top-down helps bottom-up [J].
Cheng, Joy Y. ;
Ross, Caroline A. ;
Smith, Henry I. ;
Thomas, Edwin L. .
ADVANCED MATERIALS, 2006, 18 (19) :2505-2521
[3]   Generation of nano-scaled DNA patterns through electro-beam induced charge trapping [J].
Chi, Pei-Yin ;
Lin, Hung-Yi ;
Liu, Cheng-Hsien ;
Chen, Chii-Dong .
NANOTECHNOLOGY, 2006, 17 (19) :4854-4858
[4]   Integration of colloidal nanocrystals into lithographically patterned devices [J].
Cui, Y ;
Bjork, MT ;
Liddle, JA ;
Sonnichsen, C ;
Boussert, B ;
Alivisatos, AP .
NANO LETTERS, 2004, 4 (06) :1093-1098
[5]   Direct immobilization of DNA on diamond-like carbon nanodots [J].
Djenizian, T ;
Balaur, E ;
Schmuki, P .
NANOTECHNOLOGY, 2006, 17 (08) :2004-2007
[6]   Ion beam deposition of diamond-like carbon from an rf inductively coupled CH4-plasma source [J].
Druz, B ;
DiStefano, S ;
Hayes, A ;
Ostan, E ;
Williams, K ;
Wang, L .
SURFACE & COATINGS TECHNOLOGY, 1996, 86-7 (1-3) :708-714
[7]   Influence of the structure of boundary layers and the nature of counterions on the position of the isoelectric point of silica surfaces [J].
Ermakova, L. E. ;
Sidorova, M. P. ;
Bogdanova, N. F. .
COLLOID JOURNAL, 2006, 68 (04) :411-416
[8]   Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing [J].
Fan, Zhiyong ;
Ho, Johnny C. ;
Jacobson, Zachery A. ;
Yerushalmi, Roie ;
Alley, Robert L. ;
Razavi, Haleh ;
Javey, Ali .
NANO LETTERS, 2008, 8 (01) :20-25
[9]   Diamond-like carbon for magnetic storage disks [J].
Ferrari, AC .
SURFACE & COATINGS TECHNOLOGY, 2004, 180 :190-206
[10]   Colloquium:: The physics of charge inversion in chemical and biological systems [J].
Grosberg, AY ;
Nguyen, TT ;
Shklovskii, BI .
REVIEWS OF MODERN PHYSICS, 2002, 74 (02) :329-345