Optimality Conditions for Metrically Consistent Approximate Solutions in Vector Optimization

被引:0
作者
C. Gutiérrez
B. Jiménez
V. Novo
机构
[1] Universidad de Valladolid,Departamento de Matemática Aplicada
[2] Universidad Nacional de Educación a Distancia,Departamento de Matemática Aplicada
来源
Journal of Optimization Theory and Applications | 2007年 / 133卷
关键词
Vector optimization; -Efficiency; Scalarization; Gauge functionals; Generalized Chebyshev norms;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, approximate solutions of vector optimization problems are analyzed via a metrically consistent ε-efficient concept. Several properties of the ε-efficient set are studied. By scalarization, necessary and sufficient conditions for approximate solutions of convex and nonconvex vector optimization problems are provided; a characterization is obtained via generalized Chebyshev norms, attaining the same precision in the vector problem as in the scalarization.
引用
收藏
页码:49 / 64
页数:15
相关论文
共 50 条
  • [1] Optimality conditions for metrically consistent approximate solutions in vector optimization
    Gutierrez, C.
    Jimenez, B.
    Novo, V.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2007, 133 (01) : 49 - 64
  • [2] Existence and Optimality Conditions for Approximate Solutions to Vector Optimization Problems
    Gao, Y.
    Hou, S. H.
    Yang, X. M.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 152 (01) : 97 - 120
  • [3] Existence and Optimality Conditions for Approximate Solutions to Vector Optimization Problems
    Y. Gao
    S. H. Hou
    X. M. Yang
    Journal of Optimization Theory and Applications, 2012, 152 : 97 - 120
  • [4] OPTIMALITY CONDITIONS FOR APPROXIMATE SOLUTIONS OF VECTOR OPTIMIZATION PROBLEMS
    Gao, Ying
    Yang, Xinmin
    Teo, Kok Lay
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2011, 7 (02) : 483 - 496
  • [5] Unified approach and optimality conditions for approximate solutions of vector optimization problems
    Gutierrez, Cesar
    Jimenez, Bienvenido
    Novo, Vicente
    SIAM JOURNAL ON OPTIMIZATION, 2006, 17 (03) : 688 - 710
  • [6] OPTIMALITY CONDITIONS AND DUALITY FOR APPROXIMATE SOLUTIONS OF VECTOR OPTIMIZATION PROBLEMS
    Liu, Caiping
    Yang, Xinmin
    PACIFIC JOURNAL OF OPTIMIZATION, 2015, 11 (03): : 495 - 510
  • [7] Optimality Conditions for Approximate Solutions in Multiobjective Optimization Problems
    Ying Gao
    Xinmin Yang
    HeungWingJoseph Lee
    Journal of Inequalities and Applications, 2010
  • [8] Optimality Conditions for Quasi-Solutions of Vector Optimization Problems
    Gutierrez, C.
    Jimenez, B.
    Novo, V.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 167 (03) : 796 - 820
  • [9] Optimality Conditions for Approximate Solutions in Multiobjective Optimization Problems
    Gao, Ying
    Yang, Xinmin
    Lee, Heung Wing Joseph
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
  • [10] Optimality Conditions for Quasi-Solutions of Vector Optimization Problems
    C. Gutiérrez
    B. Jiménez
    V. Novo
    Journal of Optimization Theory and Applications, 2015, 167 : 796 - 820