The dimensions of the divergence points of self-similar measures with weak separation condition

被引:0
|
作者
Xiaoyao Zhou
Ercai Chen
机构
[1] Nanjing Normal University,School of Mathematical Science
[2] Center of Nonlinear Science,undefined
[3] Nanjing University,undefined
来源
Monatshefte für Mathematik | 2017年 / 183卷
关键词
Divergence points; Packing dimension; Hausdorff dimension; Moran structure; 37D35; 37A35;
D O I
暂无
中图分类号
学科分类号
摘要
Let μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} be the self-similar measure supported on the self-similar set K with the weak separation condition, which is weaker than the open set condition. This article uses Hausdorff dimension and packing dimension to investigate the multifractal structure of several sets of divergence points of μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} in the iterated function system.
引用
收藏
页码:379 / 391
页数:12
相关论文
共 42 条
  • [31] Equivalence of gap sequences and Hausdorff dimensions of self-similar sets
    Yang, Yamin
    PROCEEDING OF THE SEVENTH INTERNATIONAL CONFERENCE ON INFORMATION AND MANAGEMENT SCIENCES, 2008, 7 : 442 - 443
  • [32] Dimensions of ℝ-trees and self-similar fractal spaces of nonpositive curvature
    P. D. Andreev
    V. N. Berestovskiĭ
    Siberian Advances in Mathematics, 2007, 17 (2) : 79 - 90
  • [33] Estimating the Hausdorff dimensions of univoque sets for self-similar sets
    Chen, Xiu
    Jiang, Kan
    Li, Wenxia
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2019, 30 (05): : 862 - 873
  • [34] Properties of some overlapping self-similar and some self-affine measures
    Neunhäuserer, J
    ACTA MATHEMATICA HUNGARICA, 2001, 92 (1-2) : 143 - 161
  • [35] ON DIMENSIONS OF VISIBLE PARTS OF SELF-SIMILAR SETS WITH FINITE ROTATION GROUPS
    Jarvenpaa, E. S. A.
    Jarvenpaa, Maarit
    Suomala, Ville
    Wu, Meng
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (07) : 2983 - 2995
  • [36] Asymptotic of the geometric mean error in the quantization of recurrent self-similar measures
    Roychowdhury, Mrinal Kanti
    Snigireva, Nina
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 431 (02) : 737 - 751
  • [37] MULTIFRACTAL SPECTRA FOR RANDOM SELF-SIMILAR MEASURES VIA BRANCHING PROCESSES
    Biggins, J. D.
    Hambly, B. M.
    Jones, O. D.
    ADVANCES IN APPLIED PROBABILITY, 2011, 43 (01) : 1 - 39
  • [38] On a class of self-similar sets which contain finitely many common points
    Jiang, Kan
    Kong, Derong
    Li, Wenxia
    Wang, Zhiqiang
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024,
  • [39] Average distances between points in graph-directed self-similar fractals
    Olsen, L.
    Richardson, A.
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (01) : 170 - 194
  • [40] Algorithms to test open set condition for self-similar set related to PV numbers
    Li, Hao
    Guo, Qiu-Li
    Wang, Qin
    Xi, Li-Feng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 421 (01) : 453 - 473