Covering numbers: Arithmetics and dynamics for rotations and interval exchanges

被引:0
作者
Valérie Berthé
Nataliya Chekhova
Sébastien Ferenczi
机构
[1] CNRS-UPR 9016,Institut de Mathématiques de Luminy
来源
Journal d’Analyse Mathématique | 1999年 / 79卷
关键词
Symbolic Dynamic; Interval Exchange; Irrational Rotation; Simple Spectrum; Covering Number;
D O I
暂无
中图分类号
学科分类号
摘要
We study a particular case of the two-dimensional Steinhaus theorem, giving estimates of the possible distances between points of the formkα andkα+β on the unit circle, through an approximation algorithm of β by the pointskα. This allows us to compute covering numbers (maximal measures of Rokhlin stacks having certain prescribed regularity properties) for the symbolic dynamical systems associated to the rotation of argument α, acting on the partition of the circle by the points 0, β. We can the compute topological and measure-theoretic covering numbers for exchange of three intervals; in this way, we prove that every ergodic exchange of three intervals has simple spectrum and build a new class of three-interval exchanges which are not of rank one.
引用
收藏
页码:1 / 31
页数:30
相关论文
共 49 条
[1]  
Alessandri P.(1998)Three distance theorem and combinatorics on words Enseign. Math. 44 103-132
[2]  
Berthé V.(1963)Small denominators and problems of stability of motion in classical and celestial mechanics Uspeki Mat. Nauk 18 91-192
[3]  
Arnold V. I.(1999)Trajectories of rotations Acta. Arith. 87 209-217
[4]  
Arnoux P.(1991) 2 Bull. Soc. Math. France 119 199-215
[5]  
Ferenczi S.(1996)+1 Theoret. Comput. Sci. 165 295-309
[6]  
Hubert P.(1985)Fréquences des facteurs des suites sturmiennes Duke Math. J. 52 723-752
[7]  
Arnoux P.(1999)A condition for minimal interval exchange maps to be uniquely ergodic Theoret. Comput. Sci. 230 97-116
[8]  
Rauzy G(1973)Covering numbers of rotations Math. Systems Theory 7 138-153
[9]  
Berthé V.(1976)Sequences with minimal block growth Canad. J. Math. 24 836-839
[10]  
Boshernitzan M.(1984)Transformations with discrete spectrum are stacking transformations Ann. Inst. H. Poincaré 20 35-51