Regularization of the solution of the Cauchy problem for the system of Maxwell equations in an unbounded domain

被引:0
作者
É. N. Sattorov
机构
[1] Samarkand State University,
来源
Mathematical Notes | 2009年 / 86卷
关键词
Maxwell equations; Cauchy problem; regularization; analytic continuation; Carleman matrix; Laplace equation; Helmholtz equation;
D O I
暂无
中图分类号
学科分类号
摘要
We study the analytic continuation of the solution of the system of Maxwell equations in a spatial unbounded domain from its values on a part of the boundary of this domain. We construct an approximate solution of this problem based on the Carleman matrix method.
引用
收藏
相关论文
共 14 条
[1]  
Lavrent’ev M. M.(1956)On the Cauchy problem for the Laplace equation Izv. Akad. Nauk SSSR Ser. Mat. 20 819-842
[2]  
Lavrent’ev M. M.(1957)On the Cauchy problem for linear elliptic equations of second order Dokl. Akad. Nauk SSSR 112 195-197
[3]  
Mergelyan S. N.(1956)Harmonic approximation and approximate solution of the Cauchy problem for the Laplace equation UspekhiMat. Nauk 11 3-26
[4]  
Ivanov V. K.(1965)The Cauchy problemfor the Laplace equation in an infinite strip Differentsial’nye Uravneniya 1 131-136
[5]  
Yarmukhamedov Sh. Y.(1977)The Cauchy problem for the Laplace equation Dokl. Akad. Nauk SSSR 235 281-283
[6]  
Yarmukhamedov Sh. Y.(1992)Cauchy problem for a system of equations of three-dimensional elasticity theory Sibirsk. Mat. Zh. 33 186-190
[7]  
Ishankulov T. I.(1988)An abstract Carleman formula Dokl. Akad. Nauk SSSR 298 1292-1296
[8]  
Makhmudov O. I.(1963)On the solution of ill-posed problems and the method of regularization Dokl. Akad. Nauk SSSR 151 501-504
[9]  
Aizenberg L. A.(1985)On the Carleman matrix for elliptic systems Dokl. Akad. Nauk SSSR 284 294-297
[10]  
Tarkhanov N. N.(1939)Diffraction theory of electromagnetic waves Phys. Rev. 56 99-107