On {P1,P2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{P_1,P_2\}$$\end{document}-Nekrasov Matrices

被引:0
作者
Lei Gao
Qilong Liu
Chaoqian Li
Yaotang Li
机构
[1] Baoji University of Arts and Sciences,School of Mathematics and Information Science
[2] Guizhou Normal University,School of Mathematical Sciences
[3] Yunnan University,School of Mathematics and Statistics
关键词
-Nekrasov matrices; Linear complementarity problems; Error bounds; Subdirect sum; 15A24; 15A60; 90C33;
D O I
10.1007/s40840-021-01094-y
中图分类号
学科分类号
摘要
The class of {P1,P2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{P_1,P_2\}$$\end{document}-Nekrasov matrices, defined in terms of permutation matrices P1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_1$$\end{document} and P2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_2$$\end{document}, is a generalization of the well-known class of Nekrasov matrices. In this paper, some computable error bounds for linear complementarity problems (LCPs) of {P1,P2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{P_1,P_2\}$$\end{document}-Nekrasov matrices are given, which depend only on the entries of the involved matrices and can be used to obtain the perturbation bounds of {P1,P2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{P_1,P_2\}$$\end{document}-Nekrasov matrices LCPs. Besides, some sufficient conditions ensuring that the subdirect sum of {P1,P2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{P_1,P_2\}$$\end{document}-Nekrasov matrices lies in the same class are also provided.
引用
收藏
页码:2971 / 2999
页数:28
相关论文
共 98 条
  • [1] Liu J(2018)The Nekrasov diagonally dominant degree on the Schur complement of Nekrasov matrices and its applications Appl. Math. Comput. 320 251-263
  • [2] Zhang J(2019)Infinity norm bounds for the inverse of Nekrasov matrices using scaling matrices Appl. Math. Comput. 358 119-127
  • [3] Zhou L(1969)Bounds for determinants Linear Algebra Appl. 2 303-309
  • [4] Tu G(1956)Determinanten mit überwiegender Hauptdiagonale und die absolute Konvergenz von linearen Iterationsprozessen Comment. Math. Helv. 30 175-210
  • [5] Orera H(1892)Solutions of linear systems of equations by means of successive approximations Mut. Sb. 16 437-459
  • [6] Peña JM(1995)Some remarks on a theorem of Gudkov Linear Algebra Appl. 225 221-235
  • [7] Bailey DW(1972)On a condition for the nonsingularity of a matrix Math. Comp. 26 119-120
  • [8] Crabtree DE(2013)Infinity norm bounds for the inverse of Nekrasov matrices Appl. Math. Comput. 219 5020-5024
  • [9] Ostrowski AM(2013)On bounding inverse to Nekrasov matrices in the infinity norm Zap. Nauchn. Sem. POMI. 419 111-120
  • [10] Mehmke R(2016)Subdirect sums of Nekrasov matrices Linear Multilinear Algebra. 64 208-218