Non-Archimedean stability of a quadratic functional equation

被引:0
作者
Kenary H.A. [1 ]
Cho Y.J. [2 ]
机构
[1] Department of Mathematics, College of Science, Yasouj University, Yasouj
[2] Department of Mathematics Education and RINS, Gyeongsang National University, Chinju
关键词
Hyers-Ulam stability; Non-Archimedean normed space; p-adic field; quadratic functional equation;
D O I
10.1007/s11565-012-0170-8
中图分类号
学科分类号
摘要
Recently the Hyers-Ulam stability of the quadratic functional equation f(kx+y)+f(kx+σ (y))- 2k2 f(x)-2f(y)=0 where σ is an involution of the normed space E and k is a fixed positive integer greater that 1, has been proved in the earlier work. In this paper, using fixed point and direct methods, we prove the Hyers-Ulam stability of the above functional equation in non-Archimedean normed spaces. © 2012 Università degli Studi di Ferrara.
引用
收藏
页码:319 / 330
页数:11
相关论文
共 53 条
  • [1] Aoki, T., On the stability of the linear transformation in Banach spaces (1950) J. Math. Soc. Jpn., 2, pp. 64-66
  • [2] Arriola, L.M., Beyer, W.A., Stability of the Cauchy functional equation over p-adic fields (2005) Real Anal. Exch., 31, pp. 125-132
  • [3] Azadi, K.H., On the stability of a cubic functional equation in random normed spaces (2009) J. Math. Ext., 4, pp. 1-11
  • [4] Azadi, K.H., Stability of a pexiderial functional equation in random normed spaces (2011) Rend. Circ. Mat. Palermo., , doi: 10. 1007/s12215-011-0027-5
  • [5] Azadi, K.H., On the Hyers-Ulam-Rassais stability of functional equation in non-Archimedean and random normed spaces (2011) Acta Univ. Apulensis, 27, pp. 173-186
  • [6] Azadi, K.H., Cho, Y.J., Stability of mixed additive-quadratic Jensen type functional equation in various spaces (2011) Comput. Math. Appl., , doi: 10. 1016/j. camwa. 2011. 03. 024
  • [7] Cholewa, P.W., Remarks on the stability of functional equations (1984) Aequ. Math., 27, pp. 76-86
  • [8] Chung, J., Sahoo, P.K., On the general solution of a quartic functional equation (2003) Bull. Korean Math. Soc., 40, pp. 565-576
  • [9] Czerwik, S., (2002) Functional Equations and Inequalities in Several Variables, , River Edge, NJ: World Scientific
  • [10] Deses, D., On the representation of non-Archimedean objects (2005) Topol. Appl., 153, pp. 774-785