Definable choice for a class of weakly o-minimal theories

被引:0
|
作者
Michael C. Laskowski
Christopher S. Shaw
机构
[1] University of Maryland,Department of Mathematics
[2] Columbia College Chicago,Department of Science and Mathematics
来源
Archive for Mathematical Logic | 2016年 / 55卷
关键词
Weakly o-minimal; Skolem functions; Definable choice; 03C64;
D O I
暂无
中图分类号
学科分类号
摘要
Given an o-minimal structure M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal M}$$\end{document} with a group operation, we show that for a properly convex subset U, the theory of the expanded structure M′=(M,U)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal M}'=({\mathcal M},U)$$\end{document} has definable Skolem functions precisely when M′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal M}'$$\end{document} is valuational. As a corollary, we get an elementary proof that the theory of any such M′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal M}'$$\end{document} does not satisfy definable choice.
引用
收藏
页码:735 / 748
页数:13
相关论文
共 4 条
  • [1] Definable choice for a class of weakly o-minimal theories
    Laskowski, Michael C.
    Shaw, Christopher S.
    ARCHIVE FOR MATHEMATICAL LOGIC, 2016, 55 (5-6) : 735 - 748
  • [2] Tame properties of sets and functions definable in weakly o-minimal structures
    Eivazloo, Jafar S.
    Tari, Somayyeh
    ARCHIVE FOR MATHEMATICAL LOGIC, 2014, 53 (3-4): : 433 - 447
  • [3] Tame properties of sets and functions definable in weakly o-minimal structures
    Jafar S. Eivazloo
    Somayyeh Tari
    Archive for Mathematical Logic, 2014, 53 : 433 - 447
  • [4] On ℵ0-categorical weakly o-minimal structures
    Herwig, B
    Macpherson, HD
    Martin, G
    Nurtazin, A
    Truss, JK
    ANNALS OF PURE AND APPLIED LOGIC, 2000, 101 (01) : 65 - 93