Multiple Solutions of Dirichlet Problems on the Sierpinski Gasket

被引:0
作者
Brigitte E. Breckner
Csaba Varga
机构
[1] Babeş-Bolyai University,Faculty of Mathematics and Computer Science
来源
Journal of Optimization Theory and Applications | 2015年 / 167卷
关键词
Sierpinski gasket; Weak Laplacian; Dirichlet problem on the Sierpinski gasket; Weak solution; Critical point;
D O I
暂无
中图分类号
学科分类号
摘要
There are treated nonlinear, elliptic, and parameter-depending problems, defined on the Sierpinski gasket, a highly non-smooth fractal set. Even if the structure of this fractal differs considerably from that of (open) domains of Euclidean spaces, the paper emphasizes that PDEs defined on it may be studied (as in the Euclidean case) by means of certain variational methods. Using such methods, and some recent abstract multiplicity theorems by B. Ricceri, there are proved several results concerning the existence of multiple solutions of three-parameter Dirichlet problems defined on the Sierpinski gasket.
引用
收藏
页码:842 / 861
页数:19
相关论文
共 50 条
[41]   On the packing measure of the Sierpinski gasket [J].
Llorente, Marta ;
Eugenia Mera, M. ;
Moran, Manuel .
NONLINEARITY, 2018, 31 (06) :2571-2589
[42]   Extensions and their Minimizations on the Sierpinski Gasket [J].
Li, Pak-Hin ;
Ryder, Nicholas ;
Strichartz, Robert S. ;
Ugurcan, Baris Evren .
POTENTIAL ANALYSIS, 2014, 41 (04) :1167-1201
[43]   Box dimension of harmonic functions on higher dimensional Sierpinski gasket and Sierpinski gasket with bilateral energy [J].
Gopalakrishnan, Harsha ;
Prasad, Srijanani Anurag .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 540 (01)
[44]   VARIATIONAL ANALYSIS FOR A NONLINEAR ELLIPTIC PROBLEM ON THE SIERPINSKI GASKET [J].
Bonanno, Gabriele ;
Bisci, Giovanni Molica ;
Radulescu, Vicentiu .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2012, 18 (04) :941-953
[45]   Non-linear elliptical equations on the Sierpinski gasket [J].
Falconer, KJ ;
Hu, JX .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 240 (02) :552-573
[46]   Sobolev Orthogonal Polynomials on the Sierpinski Gasket [J].
Jiang, Qingxuan ;
Lan, Tian ;
Okoudjou, Kasso A. ;
Strichartz, Robert S. ;
Sule, Shashank ;
Venkat, Sreeram ;
Wang, Xiaoduo .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2021, 27 (03)
[47]   Spectral operators on the Sierpinski gasket I [J].
Allan, Adam ;
Barany, Michael ;
Strichartz, Robert S. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2009, 54 (06) :521-543
[48]   Fractal differential equations on the Sierpinski gasket [J].
Dalrymple, K ;
Strichartz, RS ;
Vinson, JP .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1999, 5 (2-3) :203-284
[49]   Reflections on harmonic analysis of the Sierpinski gasket [J].
Denker, M ;
Sato, H .
MATHEMATISCHE NACHRICHTEN, 2002, 241 :32-55
[50]   Spectral triples for the variants of the Sierpinski gasket [J].
Rivera, Andrea Arauza .
JOURNAL OF FRACTAL GEOMETRY, 2019, 6 (03) :205-246