Multiple Solutions of Dirichlet Problems on the Sierpinski Gasket

被引:0
作者
Brigitte E. Breckner
Csaba Varga
机构
[1] Babeş-Bolyai University,Faculty of Mathematics and Computer Science
来源
Journal of Optimization Theory and Applications | 2015年 / 167卷
关键词
Sierpinski gasket; Weak Laplacian; Dirichlet problem on the Sierpinski gasket; Weak solution; Critical point;
D O I
暂无
中图分类号
学科分类号
摘要
There are treated nonlinear, elliptic, and parameter-depending problems, defined on the Sierpinski gasket, a highly non-smooth fractal set. Even if the structure of this fractal differs considerably from that of (open) domains of Euclidean spaces, the paper emphasizes that PDEs defined on it may be studied (as in the Euclidean case) by means of certain variational methods. Using such methods, and some recent abstract multiplicity theorems by B. Ricceri, there are proved several results concerning the existence of multiple solutions of three-parameter Dirichlet problems defined on the Sierpinski gasket.
引用
收藏
页码:842 / 861
页数:19
相关论文
共 50 条
  • [21] GEODESICS OF THE SIERPINSKI GASKET
    Saltan, Mustafa
    Ozdemir, Yunus
    Demir, Bunyamin
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2018, 26 (03)
  • [22] On the Application of Monotonicity Methods to the Boundary Value Problems on the Sierpinski Gasket
    Galewski, Marek
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2019, 40 (11) : 1344 - 1354
  • [23] Dimer coverings on the sierpinski gasket
    Chang, Shu-Chiuan
    Chen, Lung-Chi
    JOURNAL OF STATISTICAL PHYSICS, 2008, 131 (04) : 631 - 650
  • [24] BOUNDED VARIATION ON THE SIERPINSKI GASKET
    Verma, S.
    Sahu, A.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (07)
  • [25] ECCENTRIC DISTANCE SUM OF SIERPINSKI GASKET AND SIERPINSKI NETWORK
    Chen, Jin
    He, Long
    Wang, Qin
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (02)
  • [26] Orthogonal Polynomials on the Sierpinski Gasket
    Kasso A. Okoudjou
    Robert S. Strichartz
    Elizabeth K. Tuley
    Constructive Approximation, 2013, 37 : 311 - 340
  • [27] Hausdorff measure of Sierpinski gasket
    周作领
    Science China Mathematics, 1997, (10) : 1016 - 1021
  • [28] Spanning trees on the Sierpinski gasket
    Chang, Shu-Chiuan
    Chen, Lung-Chi
    Yang, Wei-Shih
    JOURNAL OF STATISTICAL PHYSICS, 2007, 126 (03) : 649 - 667
  • [29] Hausdorff measure of Sierpinski gasket
    Zhou, ZL
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1997, 40 (10): : 1016 - 1021
  • [30] Orthogonal Polynomials on the Sierpinski Gasket
    Okoudjou, Kasso A.
    Strichartz, Robert S.
    Tuley, Elizabeth K.
    CONSTRUCTIVE APPROXIMATION, 2013, 37 (03) : 311 - 340