Multiple Solutions of Dirichlet Problems on the Sierpinski Gasket

被引:0
作者
Brigitte E. Breckner
Csaba Varga
机构
[1] Babeş-Bolyai University,Faculty of Mathematics and Computer Science
来源
Journal of Optimization Theory and Applications | 2015年 / 167卷
关键词
Sierpinski gasket; Weak Laplacian; Dirichlet problem on the Sierpinski gasket; Weak solution; Critical point;
D O I
暂无
中图分类号
学科分类号
摘要
There are treated nonlinear, elliptic, and parameter-depending problems, defined on the Sierpinski gasket, a highly non-smooth fractal set. Even if the structure of this fractal differs considerably from that of (open) domains of Euclidean spaces, the paper emphasizes that PDEs defined on it may be studied (as in the Euclidean case) by means of certain variational methods. Using such methods, and some recent abstract multiplicity theorems by B. Ricceri, there are proved several results concerning the existence of multiple solutions of three-parameter Dirichlet problems defined on the Sierpinski gasket.
引用
收藏
页码:842 / 861
页数:19
相关论文
共 50 条
[21]   GEODESICS OF THE SIERPINSKI GASKET [J].
Saltan, Mustafa ;
Ozdemir, Yunus ;
Demir, Bunyamin .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2018, 26 (03)
[22]   On the Application of Monotonicity Methods to the Boundary Value Problems on the Sierpinski Gasket [J].
Galewski, Marek .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2019, 40 (11) :1344-1354
[23]   Dimer coverings on the sierpinski gasket [J].
Chang, Shu-Chiuan ;
Chen, Lung-Chi .
JOURNAL OF STATISTICAL PHYSICS, 2008, 131 (04) :631-650
[24]   BOUNDED VARIATION ON THE SIERPINSKI GASKET [J].
Verma, S. ;
Sahu, A. .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (07)
[25]   ECCENTRIC DISTANCE SUM OF SIERPINSKI GASKET AND SIERPINSKI NETWORK [J].
Chen, Jin ;
He, Long ;
Wang, Qin .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (02)
[26]   Hausdorff measure of Sierpinski gasket [J].
周作领 .
Science China Mathematics, 1997, (10) :1016-1021
[27]   Spanning trees on the Sierpinski gasket [J].
Chang, Shu-Chiuan ;
Chen, Lung-Chi ;
Yang, Wei-Shih .
JOURNAL OF STATISTICAL PHYSICS, 2007, 126 (03) :649-667
[28]   Orthogonal Polynomials on the Sierpinski Gasket [J].
Kasso A. Okoudjou ;
Robert S. Strichartz ;
Elizabeth K. Tuley .
Constructive Approximation, 2013, 37 :311-340
[29]   AVERAGE GEODESIC DISTANCE OF SIERPINSKI GASKET AND SIERPINSKI NETWORKS [J].
Wang, Songjing ;
Yu, Zhouyu ;
Xi, Lifeng .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2017, 25 (05)
[30]   Orthogonal Polynomials on the Sierpinski Gasket [J].
Okoudjou, Kasso A. ;
Strichartz, Robert S. ;
Tuley, Elizabeth K. .
CONSTRUCTIVE APPROXIMATION, 2013, 37 (03) :311-340