Multiple Solutions of Dirichlet Problems on the Sierpinski Gasket

被引:0
作者
Brigitte E. Breckner
Csaba Varga
机构
[1] Babeş-Bolyai University,Faculty of Mathematics and Computer Science
来源
Journal of Optimization Theory and Applications | 2015年 / 167卷
关键词
Sierpinski gasket; Weak Laplacian; Dirichlet problem on the Sierpinski gasket; Weak solution; Critical point;
D O I
暂无
中图分类号
学科分类号
摘要
There are treated nonlinear, elliptic, and parameter-depending problems, defined on the Sierpinski gasket, a highly non-smooth fractal set. Even if the structure of this fractal differs considerably from that of (open) domains of Euclidean spaces, the paper emphasizes that PDEs defined on it may be studied (as in the Euclidean case) by means of certain variational methods. Using such methods, and some recent abstract multiplicity theorems by B. Ricceri, there are proved several results concerning the existence of multiple solutions of three-parameter Dirichlet problems defined on the Sierpinski gasket.
引用
收藏
页码:842 / 861
页数:19
相关论文
共 38 条
[1]  
Falconer K.J.(1999)Semilinear PDEs on self-similar fractals Commun. Math. Phys. 206 235-245
[2]  
Falconer K.J.(1999)Non-linear elliptical equations on the Sierpinski gasket J. Math. Anal. Appl. 240 552-573
[3]  
Hu J.(2004)Multiple solutions for a class of nonlinear elliptic equations on the Sierpinski gasket Sci. China Ser. A 47 772-786
[4]  
Hu C.(2009)Semilinear elliptic equations on fractal sets Acta Math. Sci. Ser. B Engl. Ed. 29 B, (2) 232-242
[5]  
Hua C.(2005)Solvability for differential equations on fractals J. Anal. Math. 96 247-267
[6]  
Zhenya H.(2010)On the existence of three solutions for the Dirichlet problem on the Sierpinski gasket Nonlinear Anal. 73 2980-2990
[7]  
Strichartz R.S.(2011)Infinitely many solutions for the Dirichlet problem on the Sierpinski gasket Anal. Appl. (Singap.) 9 235-248
[8]  
Breckner B.E.(2012)Infinitely many solutions for a class of nonlinear elliptic problems on fractals C. R. Math. Acad. Sci. Paris 350 187-191
[9]  
Repovš D.(2012)Variational analysis for a nonlinear elliptic problem on the Sierpinski gasket ESAIM Control Optim. Calc. Var. 18 941-953
[10]  
Varga Cs.(2009)A further three critical points theorem Nonlinear Anal. 71 4151-4157