Zero sets of polynomials in several variables

被引:0
作者
R. M. Aron
P. Hájek
机构
[1] Kent State University,Department of Mathematical Sciences
[2] Mathematical Institute of the Czech Academy of Science,undefined
来源
Archiv der Mathematik | 2006年 / 86卷
关键词
46B20;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k, n \in \mathbb{N}$$\end{document}, where n is odd. We show that there is an integer N  =  N(k, n) such that for every n-homogeneous polynomial \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P : \mathbb{R}^N \rightarrow \mathbb{R}$$\end{document} there exists a linear subspace \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X \hookrightarrow \mathbb{R}^N, \dim X = k$$\end{document}, such that P|X ≡ 0. This quantitative estimate improves on previous work of Birch et al., who studied this problem from an algebraic viewpoint. The topological method of proof presented here also allows us to obtain a partial solution to the Gromov-Milman problem (in dimension two) on an isometric version of a theorem of Dvoretzky.
引用
收藏
页码:561 / 568
页数:7
相关论文
empty
未找到相关数据