Analytical evaluation of zero-pressure Joule–Thomson coefficient using second virial coefficient and its application

被引:0
作者
B. A. Mamedov
E. Somuncu
机构
[1] Gaziosmanpaşa University,Department of Physics, Faculty of Arts and Sciences
[2] Giresun University,Department of Physics, Faculty of Arts and Sciences
来源
Journal of Mathematical Chemistry | 2017年 / 55卷
关键词
Second virial coefficient; Lennard-Jones (12-6) potential; Joule–Thomson coefficient;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present an analytical procedure to evaluate the zero-pressure Joule–Thomson coefficient using the second virial coefficient over the Lennard-Jones (12-6) potential. The analytical expressions are derived for the first and second derivatives of the second virial coefficient. The proposed formulae guarantee the accurate and fast calculation of the Joule–Thomson coefficient. As an example of application, the analytical expression obtained is used to calculate results for the molecules He, Xe, N2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_2 $$\end{document}, H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_2 $$\end{document}, O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O_2 $$\end{document}, CO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textit{CO}}$$\end{document}, C2H4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_2 H_4 $$\end{document}, C3H8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_3 H_8 $$\end{document} and C5H12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_5 H_{12} $$\end{document}. The results obtained by the present analytical expression are found to be in good agreement with the data in the literature. The calculation of results will help to estimate the Joule–Thomson coefficient with sufficient reliability and to determine the interaction potentials.
引用
收藏
页码:661 / 672
页数:11
相关论文
共 56 条
[1]  
McClure DW(1971)undefined Am. J. Phys. 39 288-undefined
[2]  
Stauffer PH(2004)undefined Transp. Porous Med. 105 471-undefined
[3]  
Lewis KC(2012)undefined J. Ind. Eng. Chem. 18 617-undefined
[4]  
Stein JS(2008)undefined World Appl. Sci. J. 4 169-undefined
[5]  
Travis BJ(2005)undefined Flow Meas. Instrum. 16 387-undefined
[6]  
Lichtner P(2000)undefined J. Sci. I. R. Iran 11 109-undefined
[7]  
Zyvoloski G(1986)undefined Ind. Eng. Chem. Fundam. 25 158-undefined
[8]  
Han KH(2009)undefined Cryogenic 49 151-undefined
[9]  
Noh SP(2005)undefined Cryogenic 45 253-undefined
[10]  
Hong IK(2000)undefined Phys. A 270 353-undefined