Finite element error estimates for an optimal control problem governed by the Burgers equation

被引:0
作者
Pedro Merino
机构
[1] Escuela Politécnica Nacional,ModeMat: Research Center on Mathematical Modeling, Departamento de Matemática
来源
Computational Optimization and Applications | 2016年 / 63卷
关键词
Optimal control; Burgers equation; Finite element approximation; Piecewise linear; Error estimates; 35Q53; 49K20; 49J20; 80M10; 49N05; 65N12; 41A25;
D O I
暂无
中图分类号
学科分类号
摘要
We derive a-priori error estimates for the finite-element approximation of a distributed optimal control problem governed by the steady one-dimensional Burgers equation with pointwise box constraints on the control. Here the approximation of the state and the control is done by using piecewise linear functions. With this choice, a superlinear order of convergence for the control is obtained in the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm; moreover, under a further assumption on the regularity structure of the optimal control this error estimate can be improved to h3/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h^{3/2}$$\end{document}, extending the results in Rösch (Optim. Methods Softw. 21(1): 121–134, 2006). The theoretical findings are tested experimentally by means of numerical examples.
引用
收藏
页码:793 / 824
页数:31
相关论文
共 24 条
[1]  
Arada N(2002)Error estimates for the numerical approximation of a semilinear elliptic control problem Comput. Optim. Appl. 23 201-229
[2]  
Casas E(1991)A control problem for Burgers’ equation with bounded input/output Nonlinear Dyn. 2 235-262
[3]  
Tröltzsch F(2007)Using piecewise linear functions in the numerical approximation of semilinear elliptic control problems Adv. Comput. Math. 26 137-156
[4]  
Burns JA(2002)Uniform convergence of the FEM. Applications to state constrained control problems J. Comput. Appl. Math. 21 67-100
[5]  
Kang S(2007)Error estimates for the numerical approximation of a distributed control problem for the steady-state Navier-Stokes equations SIAM J. Control Optim. 46 952-982
[6]  
Casas E(2004)A comparison of algorithms for control constrained optimal control of the burgers equation Calcolo 41 203-225
[7]  
Casas E(2008)Finite element error analysis for state-constrained optimal control of the Stokes equations Control Cybern. 37 251-284
[8]  
Mateos M(2008)Sufficient second-order optimality conditions for semilinear control problems with pointwise state constraints SIAM J. Optim. 19 616-643
[9]  
Casas E(2004)Superconvergence properties of optimal control problems SIAM J. Control Optim. 43 970-985
[10]  
Mateos M(2006)Error estimates for linear-quadratic control problems with control constraints Optim. Methods Softw. 21 121-134