Two-scale composite finite element method for parabolic problems with smooth and nonsmooth initial data

被引:0
作者
Tamal Pramanick
Rajen Kumar Sinha
机构
[1] Indian Institute of Technology Guwahati,Department of Mathematics
来源
Journal of Applied Mathematics and Computing | 2018年 / 58卷
关键词
Composite finite element; Parabolic problems; Semidiscrete; Fully discrete; Error estimate; Smooth and nonsmooth initial data; 35J20; 65N15; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a new class of finite elements, called composite finite elements, for the discretization of parabolic problems in a two-dimensional convex polygonal domain. More precisely, an effort has been made in this paper to extend two-scale composite finite element method for elliptic problems to parabolic problems. We analyze both semidiscrete and fully discrete composite finite element methods and derive convergence properties in the L∞(L2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty (L^2)$$\end{document} and L∞(H1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty (H^1)$$\end{document} norms for smooth data. Moreover, nonsmooth data error estimates in the L∞(L2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty (L^2)$$\end{document} norm for positive time is established. Compared to the classical finite element method, the composite finite element method can be viewed as a coarse scale generalization which yields a minimal dimension of the approximation space and the asymptotic order of convergence is preserved on coarse scale meshes which do not resolve the boundary. Numerical results are presented to illustrate the theoretical rates of convergence.
引用
收藏
页码:469 / 501
页数:32
相关论文
共 23 条
[1]  
Bramble JH(1989)Incomplete iterations in multistep backward difference methods for parabolic problems with smooth and nonsmooth data Math. Comput. 52 339-367
[2]  
Pasciak JE(1998)A new finite element approach for problems containing small geometric details Arch. Math. 34 105-117
[3]  
Sammon PH(1996)Adaptive composite finite elements for the solution of pdes containing nonuniformely distributed micro-scales Mater. Model. 8 31-43
[4]  
Thomée V(1997)Composite finite elements for problems containing small geometric details. Part II: implementation and numerical results Comput. Vis. Sci. 1 15-25
[5]  
Hackbusch W(2012)New development in FreeFem++ J. Numer. Math. 20 251-266
[6]  
Sauter S(1982)On the smoothing property of the Galerkin method for parabolic equations SIAM J. Numer. Anal. 19 93-113
[7]  
Hackbusch W(2008)The composite mini element-coarse mesh computation of Stokes flows on complicated domains SIAM J. Numer. Anal. 46 3181-3206
[8]  
Sauter SA(2006)Two-scale composite finite element method for Dirichlet problems on complicated domains Numer. Math. 102 681-708
[9]  
Hackbusch W(1999)Extension operators and approximation on domains containing small geometric details East-West J. Numer. Math. 7 61-77
[10]  
Sauter SA(1980)Maximum norm stability and error estimates in parabolic finite element equations Commun. Pure Appl. Math. 33 265-304