Derivations on ideals in commutative AW*-algebras

被引:0
作者
Chilin V.I. [1 ]
Levitina G.B. [1 ]
机构
[1] National University of Uzbekistan, Tashkent
关键词
boolean algebra; commutative AW*-algebra; derivation; ideal;
D O I
10.3103/S1055134414010040
中图分类号
学科分类号
摘要
LetA be a commutativeAW*-algebra.We denote by S(A) the *-algebra of measurable operators that are affiliated with A. For an ideal I in A, let s(I) denote the support of I. Let Y be a solid linear subspace in S(A). We find necessary and sufficient conditions for existence of nonzero band preserving derivations from I to Y. We prove that no nonzero band preserving derivation from I to Y exists if either Y ⊂ Aor Y is a quasi-normed solid space. We also show that a nonzero band preserving derivation from I to S(A) exists if and only if the boolean algebra of projections in the AW*-algebra s(I)A is not σ-distributive. © 2014 Allerton Press, Inc.
引用
收藏
页码:26 / 42
页数:16
相关论文
共 16 条
  • [1] Albeverio S., Ayupov S.A., Kudaybergenov K.K., Structure of derivations on various algebras of measurable operators for type I von Neumann algebras, J. Funct. Anal., 256, 9, pp. 2917-2943, (2009)
  • [2] Ber A.F., Chilin V.I., Sukochev F.A., Non-trivial derivations on commutative regular algebras, Extracta Math., 21, 2, pp. 107-147, (2006)
  • [3] Ber A.F., Sukochev F.A., Derivations in the Banach ideals of τ -compact operators
  • [4] Ber A.F., Sukochev F.A., Chilin V.I., Derivations in commutative regular algebras, Math. Notes, 75, 3, pp. 418-419, (2004)
  • [5] Berberian S.K., Baer *-Rings, (1972)
  • [6] Chilin V.I., Partially ordered Baer involutive algebras, J. SovietMath., 37, pp. 1449-1472, (1987)
  • [7] Gutman A.E., Kusraev A.G., Kutateladze S.S., The Wickstead problem, Sib. Èlectron. Mat. Izv., 5, pp. 293-333, (2008)
  • [8] Kantorovich L.V., Akilov G.P., Functional Analysis, (1982)
  • [9] Krein S.G., Petunin Y.I., Semenov E.M., Interpolation of Linear Operators, (1982)
  • [10] Kusraev A.G., Vector Duality and Its Applications, (1985)