On the Grundy and b-Chromatic Numbers of a Graph

被引:0
作者
Frédéric Havet
Leonardo Sampaio
机构
[1] I3S (CNRS,Projet Mascotte
[2] UNS) and INRIA,undefined
来源
Algorithmica | 2013年 / 65卷
关键词
Colouring; Online colouring; Greedy colouring; b-Colourings; NP-completeness; Fixed parameter complexity;
D O I
暂无
中图分类号
学科分类号
摘要
The Grundy number of a graph G, denoted by Γ(G), is the largest k such that G has a greedyk-colouring, that is a colouring with k colours obtained by applying the greedy algorithm according to some ordering of the vertexes of G. The b-chromatic number of a graph G, denoted by χb(G), is the largest k such that G has a b-colouring with k colours, that is a colouring in which each colour class contains a b-vertex, a vertex with neighbours in all other colour classes. Trivially χb(G),Γ(G)≤Δ(G)+1. In this paper, we show that deciding if Γ(G)≤Δ(G) is NP-complete even for a bipartite graph G. We then show that deciding if Γ(G)≥|V(G)|−k or if χb(G)≥|V(G)|−k are fixed parameter tractable problems with respect to the parameter k.
引用
收藏
页码:885 / 899
页数:14
相关论文
共 24 条
[1]  
Beutelspacher A.(1984)Minimal graphs for which the chromatic number equals the maximal degree Ars Comb. 18 201-216
[2]  
Hering P.-R.(1977)On an upper bound of a graph’s chromatic number, depending on the graph’s degree and density J. Comb. Theory, Ser. B 23 247-250
[3]  
Borodin O.V.(1941)On colouring the nodes of a network Math. Proc. Camb. Philos. Soc. 37 194-197
[4]  
Kostochka A.V.(1998)Uniquely colourable graphs and the hardness of colouring graphs of large girth Comb. Probab. Comput. 7 375-386
[5]  
Brooks R.L.(2005)(Δ− J. Comb. Theory, Ser. B 93 173-185
[6]  
Emden-Weinert T.(1976))-critical graphs Theor. Comput. Sci. 1 237-267
[7]  
Hougardy S.(2011)Some simplified NP-complete graph problems Discrete Appl. Math. 10 718-720
[8]  
Kreuter B.(1981)-coloring of tight graphs SIAM J. Comput. 2 225-231
[9]  
Farzad B.(1973)The NP-completeness of edge-colouring SIAM J. Comput. 91 127-141
[10]  
Molloy M.(1999)An Discrete Appl. Math. 76 136-149