Uniqueness of singular solution of semilinear elliptic equation

被引:0
作者
Baishun Lai
Qing Luo
机构
[1] Henan University,Institute of Contemporary Mathematics
[2] Henan University,School of Mathematics and Information Science
来源
Proceedings - Mathematical Sciences | 2010年 / 120卷
关键词
Nonhomogeneous semilinear elliptic equation; positive solutions; asymptotic behavior; singular solutions;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study asymptotic behavior of solution near 0 for a class of elliptic problem. The uniqueness of singular solution is established.
引用
收藏
页码:583 / 591
页数:8
相关论文
共 22 条
[1]  
Bae S.(2002)Asymptotic behavior of positive solutions of inhomogeneous semilinear elliptic equations Nonlinear Anal 51 1373-1403
[2]  
Bae S.(2003)Separation structure of positive radial solutions of a semilinear elliptic equations in J. Differ. Equ. 194 460-499
[3]  
Bae S.(2002)Infinit multiplicity of positive entire solutions for a semilinear elliptic equation J. Differ. Equ. 181 367-387
[4]  
Chang T.-K.(2001)Existence and infinite multiplicity for an inhomogenouse semilinear elliptic equation on Math. Ann. 320 191-210
[5]  
Pank D.-H.(2003)On the stability of the positive radial steady states for a semilinear Cauchy problem Nonlinear Anal 54 291-318
[6]  
Bae S.(2006)On the stability of the positive steady states for a nonhomogeneous semilinear Cauchy problem J. Differ. Equ. 228 507-529
[7]  
Ni W.-M.(1996)On positive entire solutions of the elliptic equation Δ Proc. R. Soc. Edinburgh A126 225-237
[8]  
Deng Y.-B.(1992) + J. Differ. Equ. 95 304-330
[9]  
Li Y.(1988)( Duke Math. J. 57 895-924
[10]  
Liu Y.(2000)) J. Differ. Equ. 163 381-406