Variational Problems of Surfaces in a Sphere

被引:0
|
作者
Bang Chao Yin
机构
[1] Zhengzhou University,School of Mathematics and Statistics
关键词
Submanifold; variation; rigidity theorem; Euler characteristic; 53A10; 53C24; 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
Let xM→Sn+p(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x:M \to \mathbb{S}{^{n + p}}(1)$$\end{document} be an n-dimensional submanifold immersed in an (n + p)-dimensional unit sphere Sn+p(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{S}{^{n + p}}(1)$$\end{document}. In this paper, we study n-dimensional submanifolds immersed in Sn+p(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{S}{^{n + p}}(1)$$\end{document} which are critical points of the functional S(x)=∫MSn2dv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal S}(x) = \int_M {{S^{{n \over 2}}}} dv$$\end{document}, where S is the squared length of the second fundamental form of the immersion x. When xM→S2+p(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x:M \to \mathbb{S}{^{2 + p}}(1)$$\end{document} is a surface in S2+p(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{S}{^{2 + p}}(1)$$\end{document}, the functional S(x)=∫MSn2dv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal S}(x) = \int_M {{S^{{n \over 2}}}} dv$$\end{document} represents double volume of image of Gaussian map. For the critical surface of S(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal S}(x)$$\end{document}, we get a relationship between the integral of an extrinsic quantity of the surface and its Euler characteristic. Furthermore, we establish a rigidity theorem for the critical surface of S(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal S}(x)$$\end{document}.
引用
收藏
页码:657 / 665
页数:8
相关论文
共 50 条
  • [31] Variational sphere set approximation for solid objects
    Wang, Rui
    Zhou, Kun
    Snyder, John
    Liu, Xinguo
    Bao, Hujun
    Peng, Qunsheng
    Guo, Baining
    VISUAL COMPUTER, 2006, 22 (9-11): : 612 - 621
  • [32] Hamel's Formalism and Variational Integrators on a Sphere
    Zenkov, Dmitry V.
    Leok, Melvin
    Bloch, Anthony M.
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 7504 - 7510
  • [33] Coisotropic variational problems
    Musso, E
    Grant, JDE
    JOURNAL OF GEOMETRY AND PHYSICS, 2004, 50 (1-4) : 303 - 338
  • [34] DISCRETIZATION OF VARIATIONAL PROBLEMS
    MERTEN, K
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1975, 55 (04): : 253 - 254
  • [35] DEGENERATE VARIATIONAL PROBLEMS
    DEDECKER, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (12): : 547 - 550
  • [36] CRYSTALLINE VARIATIONAL PROBLEMS
    TAYLOR, JE
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 84 (04) : 568 - 588
  • [37] KOHN VARIATIONAL PRINCIPLE FOR A SPHERE OF ARBITRARY RADIUS
    WEATHERFORD, CA
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1982, : 277 - 284
  • [38] Variational sphere set approximation for solid objects
    Rui Wang
    Kun Zhou
    John Snyder
    Xinguo Liu
    Hujun Bao
    Qunsheng Peng
    Baining Guo
    The Visual Computer, 2006, 22 : 612 - 621
  • [39] A Riesz Variational Characterization of Sobolev Spaces on the Sphere
    Geng, Jiaxin
    Ling, Yun
    Li, Jiansong
    Wang, Heping
    JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (04)
  • [40] Variational Laplacians for semidiscrete surfaces
    Wolfgang Carl
    Johannes Wallner
    Advances in Computational Mathematics, 2016, 42 : 1491 - 1509