Variational Problems of Surfaces in a Sphere

被引:0
|
作者
Bang Chao Yin
机构
[1] Zhengzhou University,School of Mathematics and Statistics
关键词
Submanifold; variation; rigidity theorem; Euler characteristic; 53A10; 53C24; 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
Let xM→Sn+p(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x:M \to \mathbb{S}{^{n + p}}(1)$$\end{document} be an n-dimensional submanifold immersed in an (n + p)-dimensional unit sphere Sn+p(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{S}{^{n + p}}(1)$$\end{document}. In this paper, we study n-dimensional submanifolds immersed in Sn+p(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{S}{^{n + p}}(1)$$\end{document} which are critical points of the functional S(x)=∫MSn2dv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal S}(x) = \int_M {{S^{{n \over 2}}}} dv$$\end{document}, where S is the squared length of the second fundamental form of the immersion x. When xM→S2+p(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x:M \to \mathbb{S}{^{2 + p}}(1)$$\end{document} is a surface in S2+p(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{S}{^{2 + p}}(1)$$\end{document}, the functional S(x)=∫MSn2dv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal S}(x) = \int_M {{S^{{n \over 2}}}} dv$$\end{document} represents double volume of image of Gaussian map. For the critical surface of S(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal S}(x)$$\end{document}, we get a relationship between the integral of an extrinsic quantity of the surface and its Euler characteristic. Furthermore, we establish a rigidity theorem for the critical surface of S(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal S}(x)$$\end{document}.
引用
收藏
页码:657 / 665
页数:8
相关论文
共 50 条