Variational inference for Bayesian bridge regression

被引:0
作者
Zanini C.T.P. [1 ]
Migon H.S. [1 ]
Dias R. [2 ]
机构
[1] Departamento de Métodos Estatísticos, Universidade Federal do Rio de Janeiro, RJ, Rio de Janeiro
[2] Instituto de Matemática, Estatística e Ciência da Computação, Universidade Estadual de Campinas, SP, Campinas
基金
巴西圣保罗研究基金会;
关键词
Bayesian inference; Bridge penalization; Splines; Variational Inference;
D O I
10.1007/s11222-023-10317-0
中图分类号
学科分类号
摘要
The bridge approach for regularization of coefficients in regression models uses ℓα norm, with α∈ (0 , + ∞) , to define a penalization on large values of the regression coefficients. Particular cases include the Lasso and Ridge penalizations. In Bayesian models, the penalization is enforced by a prior distribution on the coefficients. Although MCMC approaches are available for Bayesian bridge regression, they can be very slow for large datasets, specially in high dimensions. This paper develops an implementation of Automatic Differentiation Variational Inference for Bayesian inference on semi-parametric regression models with bridge penalization. The non-parametric effects of covariates are modeled by B-splines. The proposed inference procedure allows the use of small batches of data at each iteration (due to stochastic gradient based updates), therefore drastically reducing computational time in comparison with MCMC. Full Bayesian inference is preserved so joint uncertainty estimates for all model parameters are available. A simulation study shows the main properties of the proposed method and an application to a large real dataset is presented. © 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
相关论文
共 47 条
[1]  
Alves L., Dias R., Migon H.S., Variational Full Bayes Lasso: Knots Selection in Regression Splines (2021). Arxiv Preprint Arxiv, 2102
[2]  
Armagan A., Variational bridge regression, Artificial Intelligence and Statistics, pp. 17-24, (2009)
[3]  
Baydin A.G., Pearlmutter B.A., Radul A.A., Siskind J.M., Automatic differentiation in machine learning: a survey, J. Mach. Learn. Res., 18, pp. 1-43, (2018)
[4]  
Blei D.M., Kucukelbir A., McAuliffe J.D., Variational inference: a review for statisticians, J. Am. Stat. Assoc., 112, 518, pp. 859-877, (2017)
[5]  
Burkner P.C., brms: An R package for Bayesian multilevel models using Stan, J. Stat. Softw., 80, 1, pp. 1-28, (2017)
[6]  
Carvalho C.M., Polson N.G., Scott J.G., Handling sparsity via the horseshoe, Artificial Intelligence and Statistics, pp. 73-80, (2009)
[7]  
Casella G., Ghosh M., Gill J., Kyung M., Penalized regression, standard errors, and Bayesian lassos, Bayesian Anal., 5, 2, pp. 369-411, (2010)
[8]  
Currie I.D., Durban M., Flexible smoothing with p-splines: a unified approach, Stat. Model., 2, 4, pp. 333-349, (2002)
[9]  
Damien P., Walker S.G., Sampling truncated normal, beta, and gamma densities, J. Comput. Graph. Stat., 10, 2, pp. 206-215, (2001)
[10]  
Denison D., Mallick B., Smith A., Automatic Bayesian curve fitting, J. R. Stat. Soc. Ser. B (Stat. Methodol.), 60, 2, pp. 333-350, (1998)