A spectral collocation method for nonlinear fractional initial value problems with a variable-order fractional derivative

被引:0
作者
Rian Yan
Minggang Han
Qiang Ma
Xiaohua Ding
机构
[1] Harbin Institute of Technology at Weihai,Department of Mathematics
来源
Computational and Applied Mathematics | 2019年 / 38卷
关键词
Spectral collocation method; Variable fractional order; Initial value problem; Convergence analysis; 65L60; 41A05; 41A10; 41A25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the initial value problems for a class of nonlinear fractional differential equations involving the variable-order fractional derivative. Our goal is to construct the spectral collocation scheme for the problem and carry out a rigorous error analysis of the proposed method. To reach this target, we first show that the variable-order fractional calculus of non constant functions does not have the properties like the constant order calculus. Second, we study the existence and uniqueness of exact solution for the problem using Banach’s fixed-point theorem and the Gronwall–Bellman lemma. Third, we employ the Legendre–Gauss and Jacobi–Gauss interpolations to conquer the influence of the nonlinear term and the variable-order fractional derivative. Accordingly, we construct the spectral collocation scheme and design the algorithm. We also establish priori error estimates for the proposed scheme in the function spaces L2[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}[0,1]$$\end{document} and L∞[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }[0,1]$$\end{document}. Finally, numerical results are given to support the theoretical conclusions.
引用
收藏
相关论文
共 50 条
  • [31] Applications of variable-order fractional operators: a review
    Patnaik, Sansit
    Hollkamp, John P.
    Semperlotti, Fabio
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 476 (2234):
  • [32] On spectral methods for solving variable-order fractional integro-differential equations
    E. H. Doha
    M. A. Abdelkawy
    A. Z. M. Amin
    António M. Lopes
    Computational and Applied Mathematics, 2018, 37 : 3937 - 3950
  • [33] On spectral methods for solving variable-order fractional integro-differential equations
    Doha, E. H.
    Abdelkawy, M. A.
    Amin, A. Z. M.
    Lopes, Antonio M.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (03) : 3937 - 3950
  • [34] A Legendre collocation method for distributed-order fractional optimal control problems
    Zaky, Mahmoud A.
    NONLINEAR DYNAMICS, 2018, 91 (04) : 2667 - 2681
  • [35] A fractional spectral collocation method for general Caputo two-point boundary value problems
    Cai, Haotao
    An, Qiguang
    APPLIED NUMERICAL MATHEMATICS, 2021, 163 (163) : 43 - 56
  • [36] A Numerical Approach for the System of Nonlinear Variable-order Fractional Volterra Integral Equations
    Yifei Wang
    Jin Huang
    Hu Li
    Numerical Algorithms, 2024, 95 : 1855 - 1877
  • [37] A Legendre collocation method for distributed-order fractional optimal control problems
    Mahmoud A. Zaky
    Nonlinear Dynamics, 2018, 91 : 2667 - 2681
  • [38] Shifted fractional Jacobi collocation method for solving fractional functional differential equations of variable order
    Abdelkawy, M. A.
    Lopes, Antonio M.
    Babatin, Mohammed M.
    CHAOS SOLITONS & FRACTALS, 2020, 134
  • [39] A space–time spectral approximation for solving nonlinear variable-order fractional sine and Klein–Gordon differential equations
    E. H. Doha
    M. A. Abdelkawy
    A. Z. M. Amin
    António M. Lopes
    Computational and Applied Mathematics, 2018, 37 : 6212 - 6229
  • [40] A Numerical Approach for the System of Nonlinear Variable-order Fractional Volterra Integral Equations
    Wang, Yifei
    Huang, Jin
    Li, Hu
    NUMERICAL ALGORITHMS, 2024, 95 (04) : 1855 - 1877