A spectral collocation method for nonlinear fractional initial value problems with a variable-order fractional derivative

被引:0
|
作者
Rian Yan
Minggang Han
Qiang Ma
Xiaohua Ding
机构
[1] Harbin Institute of Technology at Weihai,Department of Mathematics
来源
Computational and Applied Mathematics | 2019年 / 38卷
关键词
Spectral collocation method; Variable fractional order; Initial value problem; Convergence analysis; 65L60; 41A05; 41A10; 41A25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the initial value problems for a class of nonlinear fractional differential equations involving the variable-order fractional derivative. Our goal is to construct the spectral collocation scheme for the problem and carry out a rigorous error analysis of the proposed method. To reach this target, we first show that the variable-order fractional calculus of non constant functions does not have the properties like the constant order calculus. Second, we study the existence and uniqueness of exact solution for the problem using Banach’s fixed-point theorem and the Gronwall–Bellman lemma. Third, we employ the Legendre–Gauss and Jacobi–Gauss interpolations to conquer the influence of the nonlinear term and the variable-order fractional derivative. Accordingly, we construct the spectral collocation scheme and design the algorithm. We also establish priori error estimates for the proposed scheme in the function spaces L2[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}[0,1]$$\end{document} and L∞[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }[0,1]$$\end{document}. Finally, numerical results are given to support the theoretical conclusions.
引用
收藏
相关论文
共 50 条
  • [21] Explicit scheme for solving variable-order time-fractional initial boundary value problems
    Kanwal, Asia
    Boulaaras, Salah
    Shafqat, Ramsha
    Taufeeq, Bilal
    Rahman, Mati Ur
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [22] Explicit scheme for solving variable-order time-fractional initial boundary value problems
    Asia Kanwal
    Salah Boulaaras
    Ramsha Shafqat
    Bilal Taufeeq
    Mati ur Rahman
    Scientific Reports, 14
  • [23] Fractional spectral collocation methods for linear and nonlinear variable order FPDEs
    Zayernouri, Mohsen
    Karniadakis, George Em
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 : 312 - 338
  • [24] A direct computational method for nonlinear variable-order fractional delay optimal control problems
    Heydari, Mohammad Hossein
    Avazzadeh, Zakieh
    ASIAN JOURNAL OF CONTROL, 2021, 23 (06) : 2709 - 2718
  • [25] Collocation method with Lagrange polynomials for variable-order time-fractional advection-diffusion problems
    Kumar, Saurabh
    Gupta, Vikas
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (02) : 1113 - 1131
  • [26] A meshless method to solve the variable-order fractional diffusion problems with fourth-order derivative term
    Safari, Farzaneh
    Jing, Li
    Lu, Jun
    Chen, Wen
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2022, 143 : 677 - 686
  • [27] Legendre-collocation spectral solver for variable-order fractional functional differential equations
    Hafez, Ramy Mahmoud
    Youssri, Youssri Hassan
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2020, 8 (01): : 99 - 110
  • [28] Spectral collocation method for nonlinear Riemann-Liouville fractional terminal value problems
    Gu, Zhendong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 398
  • [29] Spectral collocation method for Caputo fractional terminal value problems
    Zhendong Gu
    Yinying Kong
    Numerical Algorithms, 2021, 88 : 93 - 111
  • [30] Spectral collocation method for Caputo fractional terminal value problems
    Gu, Zhendong
    Kong, Yinying
    NUMERICAL ALGORITHMS, 2021, 88 (01) : 93 - 111