The aim of this paper is to prove an Lq1∩Lq2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {L}_q^1 \cap \mathcal {L}_q^2$$\end{document} versions of Nash and Carlson’s inequalities for a class of q-integral operator Tq\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {T}_q$$\end{document} with a bounded kernel. As applications, we give q-analogues of Nash and Carlson’s inequalities for the q-Fourier-cosine, q-Fourier-sine, q-Dunkl and q-Bessel Fourier transforms.
机构:
ISI USIM, CyberSecur & Syst Res Unit, Nilai 71800, MalaysiaISI USIM, CyberSecur & Syst Res Unit, Nilai 71800, Malaysia
AlMasri, M. W.
Wahiddin, M. R. B.
论文数: 0引用数: 0
h-index: 0
机构:
USIM, ISI USIM Pusat Tamhidi, CyberSecur & Syst Res Unit, Nilai 71800, Negeri Sembilan, MalaysiaISI USIM, CyberSecur & Syst Res Unit, Nilai 71800, Malaysia