Sharp and Meager Elements in Orthocomplete Homogeneous Effect Algebras

被引:0
作者
Gejza Jenča
机构
[1] Faculty of Civil Engineering,Department of Mathematics and Descriptive Geometry
来源
Order | 2010年 / 27卷
关键词
Effect algebra; Orthomodular lattice; BCK-algebra; Primary 06C15; Secondary 03G12; 81P10;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that every orthocomplete homogeneous effect algebra is sharply dominating. Let us denote the greatest sharp element below x by x↓. For every element x of an orthocomplete homogeneous effect algebra and for every block B with x ∈ B, the interval [x↓,x] is a subset of B. For every meager element (that means, an element x with x↓ = 0), the interval [0,x] is a complete MV-effect algebra. As a consequence, the set of all meager elements of an orthocomplete homogeneous effect algebra forms a commutative BCK-algebra with the relative cancellation property. We prove that a complete lattice ordered effect algebra E is completely determined by the complete orthomodular lattice S(E) of sharp elements, the BCK-algebra M(E) of meager elements and a mapping h:S(E)→2M(E) given by h(a) = [0,a] ∩ M(E).
引用
收藏
页码:41 / 61
页数:20
相关论文
共 50 条
  • [41] Effect Algebras as Presheaves on Finite Boolean Algebras
    Jenca, Gejza
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2018, 35 (03): : 525 - 540
  • [42] Effect Algebras as Presheaves on Finite Boolean Algebras
    Gejza Jenča
    Order, 2018, 35 : 525 - 540
  • [43] INTERVALS IN GENERALIZED EFFECT ALGEBRAS AND THEIR SUB-GENERALIZED EFFECT ALGEBRAS
    Riecanova, Zdenka
    Zajac, Michal
    ACTA POLYTECHNICA, 2013, 53 (03) : 314 - 316
  • [44] Product Effect Algebras
    Anatolij Dvurečenskij
    International Journal of Theoretical Physics, 2002, 41 : 1827 - 1839
  • [45] MEASURES ON EFFECT ALGEBRAS
    Barbieri, Giuseppina
    Garcia-Pacheco, Francisco J.
    Moreno-Pulido, Soledad
    MATHEMATICA SLOVACA, 2019, 69 (01) : 159 - 170
  • [46] Effect algebras with compressions
    Pulmannova, Sylvia
    REPORTS ON MATHEMATICAL PHYSICS, 2006, 58 (02) : 301 - 324
  • [47] Product effect algebras
    Dvurecenskij, A
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2002, 41 (10) : 1827 - 1839
  • [48] Lexicographic effect algebras
    Anatolij Dvurečenskij
    Algebra universalis, 2016, 75 : 451 - 480
  • [49] Dynamic effect algebras
    Chajda, Ivan
    Kolarik, Miroslav
    MATHEMATICA SLOVACA, 2012, 62 (03) : 379 - 388
  • [50] ON TOPOLOGICAL EFFECT ALGEBRAS
    Rakhshani, M. R.
    Borzooei, R. A.
    Rezaei, G. R.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, (39): : 312 - 325