Sharp and Meager Elements in Orthocomplete Homogeneous Effect Algebras

被引:0
作者
Gejza Jenča
机构
[1] Faculty of Civil Engineering,Department of Mathematics and Descriptive Geometry
来源
Order | 2010年 / 27卷
关键词
Effect algebra; Orthomodular lattice; BCK-algebra; Primary 06C15; Secondary 03G12; 81P10;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that every orthocomplete homogeneous effect algebra is sharply dominating. Let us denote the greatest sharp element below x by x↓. For every element x of an orthocomplete homogeneous effect algebra and for every block B with x ∈ B, the interval [x↓,x] is a subset of B. For every meager element (that means, an element x with x↓ = 0), the interval [0,x] is a complete MV-effect algebra. As a consequence, the set of all meager elements of an orthocomplete homogeneous effect algebra forms a commutative BCK-algebra with the relative cancellation property. We prove that a complete lattice ordered effect algebra E is completely determined by the complete orthomodular lattice S(E) of sharp elements, the BCK-algebra M(E) of meager elements and a mapping h:S(E)→2M(E) given by h(a) = [0,a] ∩ M(E).
引用
收藏
页码:41 / 61
页数:20
相关论文
共 50 条
  • [31] Compatibility of observables on effect algebras
    S. Pulmannová
    E. Vinceková
    Soft Computing, 2016, 20 : 3957 - 3967
  • [32] Direct limits of effect algebras
    Habil, ED
    PROCEEDINGS OF THE MATHEMATICS CONFERENCE, 2000, : 126 - 138
  • [33] Regular elements in generalized hermitian algebras
    Foulis, David J.
    Pulmannova, Sylvia
    MATHEMATICA SLOVACA, 2011, 61 (02) : 155 - 172
  • [34] Central elements and Cantor-Bernstein's theorem for pseudo-effect algebras
    Dvurecenskij, A
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2003, 74 : 121 - 143
  • [35] A generalized Sasaki projection for effect algebras
    Bennett, MK
    Foulis, DJ
    TATRA MOUNTAINS MATHEMATICAL PUBLICATIONS, VOL 15, 1998: QUANTUM STRUCTURES II, 1998, : 55 - 66
  • [36] Embeddings of generalized effect algebras into complete effect algebras
    Riecanová, Z
    SOFT COMPUTING, 2006, 10 (06) : 476 - 482
  • [37] Embeddings of generalized effect algebras into complete effect algebras
    Z. Riečanová
    Soft Computing, 2006, 10 : 476 - 482
  • [38] BL-algebras and effect algebras
    Vetterlein, T
    SOFT COMPUTING, 2005, 9 (08) : 557 - 564
  • [39] BL-algebras and effect algebras
    T. Vetterlein
    Soft Computing, 2005, 9 : 557 - 564
  • [40] Chain tensor products and interval effect algebras
    Stanley Gudder
    International Journal of Theoretical Physics, 1997, 36 : 1085 - 1098