On a Class of Random Walks with Reinforced Memory

被引:0
作者
Erich Baur
机构
[1] Bern University of Applied Sciences,
来源
Journal of Statistical Physics | 2020年 / 181卷
关键词
Reinforced random walks; Preferential attachment; Memory; Stable processes; Branching processes; Pólya urns; 60G50; 60G52; 60K35; 05C85;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with different models of random walks with a reinforced memory of preferential attachment type. We consider extensions of the Elephant Random Walk introduced by Schütz and Trimper (Phys Rev E 70:044510(R), 2004) with stronger reinforcement mechanisms, where, roughly speaking, a step from the past is remembered proportional to some weight and then repeated with probability p. With probability 1-p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-p$$\end{document}, the random walk performs a step independent of the past. The weight of the remembered step is increased by an additive factor b≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\ge 0$$\end{document}, making it likelier to repeat the step again in the future. A combination of techniques from the theory of urns, branching processes and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-stable processes enables us to discuss the limit behavior of reinforced versions of both the Elephant Random Walk and its α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-stable counterpart, the so-called Shark Random Swim introduced by Businger (J Stat Phys 172(3):701–717, 2004). We establish phase transitions, separating subcritical from supercritical regimes.
引用
收藏
页码:772 / 802
页数:30
相关论文
共 44 条
[41]  
Schütz GM(undefined)undefined undefined undefined undefined-undefined
[42]  
Trimper S(undefined)undefined undefined undefined undefined-undefined
[43]  
Silver D(undefined)undefined undefined undefined undefined-undefined
[44]  
Huang A(undefined)undefined undefined undefined undefined-undefined