Sound speeds have been measured for aqueous solutions of the nucleoside thymidine at T = 298.15 K and at the pressures p = (10, 20, 40, 60, 80, and 100) MPa. The partial molar volumes at infinite dilution, V2o\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ V_{2}^{\text{o}} $$\end{document}, the partial molar isentropic compressions at infinite dilution, KS,2o\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ K_{S,2}^{\text{o}} $$\end{document}, and the partial molar isothermal compressions at infinite dilution, KT,2o\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ K_{T,2}^{\text{o}} $$\end{document}{KT,2o=-(∂V2o/∂p)T}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \{ K_{T,2}^{\text{o}} = - (\partial V_{2}^{\text{o}} /\partial p)_{T} \} $$\end{document}, have been derived from the sound speeds at elevated pressures using methods described in our previous work. The V2o\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ V_{2}^{\text{o}} $$\end{document} and KT,2o\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ K_{T,2}^{\text{o}} $$\end{document} results were rationalized in terms of the likely interactions between thymidine and the aqueous solvent. The V2o\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ V_{2}^{\text{o}} $$\end{document} results were also compared with those calculated using the revised Helgeson–Kirkham–Flowers (HKF) equation of state.