Weak Convergence for the Fourth-Order Stochastic Heat Equation with Fractional Noises

被引:0
|
作者
Junfeng Liu
Guangjun Shen
Yang Yang
机构
[1] Southeast University,Department of Mathematics
[2] Nanjing Audit University,Department of Statistics
[3] Anhui Normal University,Department of Mathematics
关键词
Fourth-order stochastic heat equation; Double-parameter fractional noises; Weak convergence; 60B10; 60H05; 60H15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study a fourth-order stochastic heat equation with homogeneous Neumann boundary conditions and double-parameter fractional noises. We formally replace the random perturbation by a family of noisy inputs depending on a parameter n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\in {\mathbb {N}}$$\end{document} which approximates the noises. Then we provided sufficient conditions ensuring that the real-valued mild solution of the fourth-order stochastic heat equation driven by this family of noises converges in law, in the space of C([0,T]×[0,π])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C([0,T]\times [0,\pi ])$$\end{document} of continuous functions, to the solution of a class of fourth-order stochastic heat equation driven by fractional noises.
引用
收藏
页码:565 / 582
页数:17
相关论文
共 50 条