In this paper, we study a fourth-order stochastic heat equation with homogeneous Neumann boundary conditions and double-parameter fractional noises. We formally replace the random perturbation by a family of noisy inputs depending on a parameter n∈N\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n\in {\mathbb {N}}$$\end{document} which approximates the noises. Then we provided sufficient conditions ensuring that the real-valued mild solution of the fourth-order stochastic heat equation driven by this family of noises converges in law, in the space of C([0,T]×[0,π])\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C([0,T]\times [0,\pi ])$$\end{document} of continuous functions, to the solution of a class of fourth-order stochastic heat equation driven by fractional noises.