A multi-omics supervised autoencoder for pan-cancer clinical outcome endpoints prediction

被引:0
作者
Kaiwen Tan
Weixian Huang
Jinlong Hu
Shoubin Dong
机构
[1] South China University of Technology,Communication & Computer Network Lab of Guangdong, School of Computer Science & Engineering
来源
BMC Medical Informatics and Decision Making | / 20卷
关键词
Multic-omics; Autoencoder; Fusion; Representation; Pan-Cancer; Endpoints;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 55 条
[1]  
Li Y(2016)A review on machine learning principles for multi-view biological data integration Brief Bioinform 19 325-340
[2]  
Wu FX(2016)Dimension reduction techniques for the integrative analysis of multi-omics data Brief Bioinform 17 628-641
[3]  
Ngom A(2018)Deep learning–based multi-omics integration robustly predicts survival in liver cancer Clin Cancer Res 24 1248-1259
[4]  
Meng C(2016)Deep patient: an unsupervised representation to predict the future of patients from the electronic health records Sci Rep 6 26094-2856
[5]  
Zeleznik OA(2016)Methods for the integration of multi-omics data: mathematical aspects BMC Bioinformatics 17 S15-2466
[6]  
Thallinger GG(2009)integrOmics: an R package to unravel relationships between two omics datasets Bioinformatics. 25 2855-2912
[7]  
Kuster B(2012)Identifying multi-layer gene regulatory modules from multi-dimensional genomic data Bioinformatics. 28 2458-1326
[8]  
Gholami AM(2009)Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis Bioinformatics. 25 2906-416
[9]  
Culhane AC(2014)Netclass: an r-package for network based, integrative biomarker signature discovery Bioinformatics. 30 1325-undefined
[10]  
Chaudhary K(2014)Similarity network fusion for aggregating data types on a genomic scale Nat Methods 11 333-undefined