Arc-Transitive Pentavalent Graphs of Square-Free Order

被引:0
作者
Suyun Ding
Bo Ling
Bengong Lou
Jiangmin Pan
机构
[1] Yunnan University,School of Mathematics and Statistics
[2] Yunnan University of Finance and Economics,School of Statistics and Mathematics
来源
Graphs and Combinatorics | 2016年 / 32卷
关键词
Arc-transitive graph; Normal quotient graph; Automorphism group; 20B15; 20B30; 05C25;
D O I
暂无
中图分类号
学科分类号
摘要
Hua et al. (Discrete Math 311, 2259–2267, 2011) and Yang et al. (Discrete Math. 339, 522–532, 2016) classify arc-transitive pentavalent graphs of order 2pq and of order 2pqr (with p, q, r distinct odd primes), respectively. In this paper, we extend their results by giving a classification of arc-transitive pentavalent graphs of any square-free order.
引用
收藏
页码:2355 / 2366
页数:11
相关论文
共 47 条
  • [1] Alaeiyan M(2008)Arc-transitive Cayley graphs of valency five on abelian groups SEAMS Bull. Math. 32 1029-1035
  • [2] Talebi AA(1997)The MAGMA algebra system I: the user language J. Symb. Comput. 24 235-265
  • [3] Paryab K(1987)On weakly symmetric graphs of order twice a prime J. Combin. Theory Ser. B 42 196-211
  • [4] Bosma W(2011)One-regular graphs of square-free order of prime valency Eur. J. Combin. 32 265-275
  • [5] Cannon C(2003)Analysing finite locally Trans. Am. Math. Soc. 356 291-317
  • [6] Playoust C(1981)-arc-transitive graphs Combinatorica 1 243-256
  • [7] Cheng Y(2012)On the full automorphism group of a graph Discrete Math. 312 2214-2216
  • [8] Oxley J(2011)A note on pentavalent Electron. J. Combin 18 233-2267
  • [9] Feng YQ(2011)-transitive graphs Discrete Math. 311 2259-19
  • [10] Li YT(2014)Pentavalent symmetric graphs of order J. Graph Theory 75 1-50