Laser Cladding for Crack Repair of CMSX-4 Single-Crystalline Turbine Parts

被引:27
作者
Rottwinkel B. [1 ]
Nölke C. [1 ]
Kaierle S. [1 ]
Wesling V. [1 ]
机构
[1] Laser Zentrum Hannover e.V., Hollerithallee 8, Hannover
关键词
Blade repair; CMSX-4; Laser cladding; Single crystal;
D O I
10.1007/s40516-016-0033-8
中图分类号
学科分类号
摘要
The increase of the lifetime of modern single crystalline (SX) turbine blades is of high economic priority. The currently available repair methods using polycrystalline cladding of the damaged area do not address the issue of monocrystallinity and are restricted to few areas of the blade. The tip area of the blade is most prone to damage and undergoes the most wear, erosion and cracking during its lifetime. To repair such defects, the common procedure is to remove the whole tip with the damaged area and rebuild it by applying a polycrystalline solidification of the material. The repair of small cracks is conducted in the same way. To reduce repair cost, the investigation of a manufacturing process to repair these cracked areas while maintaining single-crystal solidification is of high interest as this does not diminish material properties and thereby its lifetime. To establish this single-crystal solidification, the realization of a directed temperature gradient is needed. The initial scope of this work is the computational prediction of the temperature field that arises and its verification during the process. The laser cladding process of CMSX-4 substrates was simulated and the necessary parameters calculated. These parameters were then applied to notched substrates and their microstructures analyzed. Starting with a simulation of the temperature field using ANSYS®, a process to repair parts of single crystalline nickel-based alloys was developed. It could be shown that damages to the tip area and cracks can be repaired by establishing a specific temperature gradient during the repair process in order to control the solidification process. © 2016, Springer Science+Business Media New York.
引用
收藏
页码:13 / 23
页数:10
相关论文
共 15 条
[1]  
Gaumann M., Bezencon C., Canalis P., Kurz W., Single-crystal laser deposition of superalloys: processing-microstructure maps, Acta Mater., 49, 6, pp. 1051-1062, (2001)
[2]  
Acharya R., Bansal R., Gambone J.J., Das S., A Coupled thermal, fluid flow, and solidification model for the processing of single-crystal alloy CMSX-4 through scanning laser epitaxy for turbine engine hot-section component repair (Part I), Metallurgic. Mater. Trans. B, 45, 6, (2014)
[3]  
Acharya R., Bansal R., Gambone J.J., Das S., A microstructure evolution model for the processing of single-crystal alloy CMSX-4 through scanning laser epitaxy for turbine engine hot-section component repair (Part II), Metallurgic. Mater. Trans. B, 45, 6, (2014)
[4]  
Liu Z., Qi H., Effects of substrate crystallographic orientations on crystal growth and microstructure formation in laser powder deposition of nickel-based superalloy, Acta Mater, (2015)
[5]  
Liu Z., Qi H., Numerical simulation of transport phenomena for a double-layer laser powder deposition of single-crystal superalloy, 45, (2014)
[6]  
Liu Z., Qi H., Jiang L., Control of crystal orientation and continuous growth through inclination of coaxial nozzle in laser powder deposition of single-crystal superalloy, 230, pp. 177-186, (2016)
[7]  
Liu W., DuPont J.N., Effects of melt-pool geometry on crystal growth and microstructure development in laser surface-melted superalloy single crystals, Acta Mater., 52, 16, pp. 4833-4847, (2004)
[8]  
Liu W., DuPont J.N., Effects of substrate crystallographic orientations on crystal growth and microstructure development in laser surface-melted superalloy single crystals. mathematical modeling of single-crystal growth in a melt pool (Part II), Acta Mater., 53, 5, pp. 1545-1558, (2005)
[9]  
Wang L., Wang N., Yao W.J., Zheng Y.P., Effect of substrate orientation on the columnar-to-equiaxed transition in laser surface remelted single crystal superalloys, Acta Mater., 88, pp. 283-292, (2015)
[10]  
Wang L., Wang N., Effect of substrate orientation on the formation of equiaxed stray grains in laser surface remelted single crystal superalloys, Experiment. Investig., 104, pp. 250-258, (2016)