Local subestimates of solutions to double-phase parabolic equations via nonlinear parabolic potentials

被引:0
作者
Buryachenko K.O. [1 ]
机构
[1] Kateryna Oleksandrivna Buryachenko Vasyl’ Stus Donetsk National University, Vinnytsia
关键词
Double-phase parabolic equations; local boundedness; local subestimetes; parabolic potentials; weak solutions;
D O I
10.1007/s10958-019-04515-3
中图分类号
学科分类号
摘要
For parabolic equations with nonstandard growth conditions, we prove local boundedness of weak solutions in terms of nonlinear parabolic potentials of the right-hand side of the equation. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:772 / 786
页数:14
相关论文
共 24 条
  • [1] Bogelein V., Duzaar F., Marcellini P., Parabolic equations with p, q− growth, J. Math. Pure. Appl., 100, pp. 535-563, (2013)
  • [2] Bogelein V., Duzaar F., Gianazza U., Porous medium type equations with measure data and potential estimates, SIAM J. Math. Anal., 45, pp. 3283-3330, (2013)
  • [3] Buryachenko K.O., Skrypnik I.I., Pointwise estimates of solutions to the double-phase elliptic equations, J. Math. Sci., 222, pp. 772-786, (2017)
  • [4] Buryachenko K.O., Skrypnik I.I., Riesz potentials and pointwise estimates of solutions to anisotropic porous medium equation, Nonlin. Analysis, 178, pp. 56-85, (2019)
  • [5] Dibenedetto E., Degenerate Parabolic Equations, (1993)
  • [6] Dibenedetto E., Urbano J.M., Vespri V., Current issues on singular and degenerate evolutoin equations, Evolutionary Equations, 1, pp. 169-286, (2004)
  • [7] DiBenedetto E., Gianazza U., Vespri V., Harnack's Inequality for Degenerate and Singular Parabolic Equations, (2012)
  • [8] Hwang S., Hölder Regularity of Solutions of Generalized P-Laplacian Type Parabolic Equations, (2012)
  • [9] Hwang S., Lieberman G.M., Hölder continuity of a bounded weak solution of generalized parabolic p-Laplacian equations II: singular case, Elect. J. Diff. Eq., 2015, 288, pp. 1-24, (2015)
  • [10] Hwang S., Lieberman G.M., Hölder continuity of a bounded weak solution of generalized parabolic p-Laplacian equations I: degenerate case, Elect. J. Diff. Eq., 2015, 287, pp. 1-32, (2015)