Carleman estimates for sub-Laplacians on Carnot groups

被引:0
作者
Vedansh Arya
Dharmendra Kumar
机构
[1] University of Jyväskylä,Department of Mathematics and Statistics
[2] Indian Institute of Science,Department of Mathematics
来源
Analysis and Mathematical Physics | 2023年 / 13卷
关键词
Carleman estimate; Carnot groups; Unique continuation; 35H20; 35A23; 35B60;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we establish a new Carleman estimate with singular weights for the sub-Laplacian on a Carnot group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb G$$\end{document} for functions satisfying the discrepancy assumption in (2.16) below. We use such an estimate to derive a sharp vanishing order estimate for solutions to stationary Schrödinger equations.
引用
收藏
相关论文
共 31 条
[11]  
Kenig C(1990)Subelliptic estimates and function spaces on nilpotent Lie groups Ann. Inst. Fourier (Grenoble) 40 313-356
[12]  
Donnelly H(1986)Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation Indiana Univ. Math. J. 35 245-268
[13]  
Fefferman C(1987)Monotonicity properties of variational integrals, Commun. Pure Appl. Math. 40 347-366
[14]  
Escauriaza L(2015) weights and unique continuation Calc. Var. Partial Differ. Equ. 54 2197-2238
[15]  
Vessella S(2000)Unique continuation for elliptic operators: a geometric-variational approach Math. Ann. 318 453-516
[16]  
Folland G(1992)Properties of a frequency of Almgren type for harmonic functions in Carnot groups Math. USSR-Sb. 72 343-361
[17]  
Garofalo N(1963)Regularity near the characteristic set in the non-linear Dirichlet problem and conformal geometry of sub-Laplacians on Carnot groups Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 11 95-100
[18]  
Lanconelli E(1958)On the possible rate of decrease at infinity of the solutions of second-order partial differential equations Pac. J. Math. 8 551-573
[19]  
Garofalo N(2016)On non-uniqueness in Cauchy problem for an elliptic second order differential equation Am. J. Math. 138 733-762
[20]  
Lin F(undefined)New bounds for solutions of second order elliptic partial differential equations undefined undefined undefined-undefined