Carleman estimates for sub-Laplacians on Carnot groups

被引:0
作者
Vedansh Arya
Dharmendra Kumar
机构
[1] University of Jyväskylä,Department of Mathematics and Statistics
[2] Indian Institute of Science,Department of Mathematics
来源
Analysis and Mathematical Physics | 2023年 / 13卷
关键词
Carleman estimate; Carnot groups; Unique continuation; 35H20; 35A23; 35B60;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we establish a new Carleman estimate with singular weights for the sub-Laplacian on a Carnot group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb G$$\end{document} for functions satisfying the discrepancy assumption in (2.16) below. We use such an estimate to derive a sharp vanishing order estimate for solutions to stationary Schrödinger equations.
引用
收藏
相关论文
共 31 条
[1]  
Aronszajn N(1957)A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order J. Math. Pures Appl. (9) 36 235-249
[2]  
Aronszajn N(1962)A unique continuation theorem for exterior differential forms on Riemannian manifolds Ark. Mat. 4 417-453
[3]  
Krzywicki A(2012)Quantitative uniqueness for Schrödinger operator Indiana Univ. Math. J. 61 1565-1580
[4]  
Szarski J(2013)Carleman estimates for the Schrödinger operator. Applications to quantitative uniqueness Commun. Partial Differ. Equ. 38 69-91
[5]  
Bakri L(2018)Sharp vanishing order of solutions to stationary Schrödinger equations on Carnot groups of arbitrary step J. Math. Anal. Appl. 465 571-587
[6]  
Bakri L(2016)Quantitative uniqueness for elliptic equations at the boundary of J. Differ. Equ. 261 6718-6757
[7]  
Banerjee A(2005) domains Invent. Math. 161 389-426
[8]  
Banerjee A(1988)On localization in the continuous Anderson–Bernoulli model in higher dimension Invent. Math 93 161-183
[9]  
Garofalo N(2003)Nodal sets of eigenfunctions on Riemannian manifolds Contemp. Math. 333 79-87
[10]  
Bourgain J(1975)Optimal three-cylinder inequalities for solutions to parabolic equations with Lipschitz leading coefficients Ark. Mat. 13 161-207