Entropy solutions to a non-conservative and non-strictly hyperbolic diagonal system inspired by dislocation dynamics

被引:0
作者
Maryam Al Zohbi
Stéphane Junca
机构
[1] Université Côte d’Azur,Inria & CNRS, LJAD
来源
Journal of Evolution Equations | 2023年 / 23卷
关键词
Dislocations; Conservation laws; Hyperbolic systems; Viscosity solutions; Entropy solutions; Riemann problem; Fractional ; spaces; 35L65; 35L67; 35Q35; 26A45; 76N10;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we study the existence of solutions to a 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document} non-conservative and non-strictly hyperbolic system in one space dimension related to the dynamics of dislocation densities in crystallography, propagating in two opposite directions. For such systems, existence results are mainly established in the sense of viscosity solutions for Hamilton-Jacobi equations. We study this problem for large initial data using the notions of the theory of conservation laws by constructing entropy solutions through the means of an adapted Godunov scheme, where the associated Riemann problem enjoys new features, more elementary waves than usual, and loss of uniqueness in many cases. The existence is obtained in spaces of functions with bounded fractional total variation BVs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$BV^s$$\end{document}, for all 0<s≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s\le 1$$\end{document}, such that BV1=BV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$BV^1=BV$$\end{document}.
引用
收藏
相关论文
共 43 条
  • [1] Barles G(1988)Exit time problems in optimal control and vanishing viscosity method SIAM J. Control Optim. 26 1133-1148
  • [2] Perthame B(1990)Comparison principle for Dirichlet-type Hamilton-Jacobi equations and singular perturbations of degenerated elliptic equations Appl. Math. Optim. 21 21-44
  • [3] Barles G(2006)Some mathematical results on a system of transport equations with an algebraic constraint describing fixed-bed adsorption of gases Journal of mathematical analysis and applications 313 551-571
  • [4] Perthame B(2007)Existence of weak entropy solutions for gas chromatography system with one or two active species and non convex isotherms Commun. Math. Sci. 5 67-84
  • [5] Bourdarias C(2000)On the convergence of godunov scheme for nonlinear hyperbolic systems Chinese Ann. Math. Ser. B 21 269-284
  • [6] Gisclon M(1983)Viscosity solutions of Hamilton-Jacobi equations Trans. Amer. Math. Soc. 277 1-42
  • [7] Junca S(1972)Polygonal approximations of solutions of the initial value problem for a conservation law Journal of mathematical analysis and applications 38 33-41
  • [8] Bourdarias C(2007)Well-posedness theory for a nonconservative Burgers-type system arising in dislocation dynamics SIAM J. Math. Anal. 39 965-986
  • [9] Gisclon M(2008)A convergent scheme for a non-local coupled system modelling dislocations densities dynamics Math. Comp. 77 789-812
  • [10] Junca S(2018)Global BV solution for a non-local coupled system modeling the dynamics of dislocation densities Journal of Differential Equations 264 1750-1785