Smooth Non-Zero Rest-Mass Evolution Across Time-Like Infinity

被引:0
作者
Helmut Friedrich
机构
[1] Max-Planck-Institut für Gravitationsphysik,
来源
Annales Henri Poincaré | 2015年 / 16卷
关键词
Energy Momentum Tensor; Conformal Factor; Cauchy Data; Conformal Boundary; Positive Cosmological Constant;
D O I
暂无
中图分类号
学科分类号
摘要
It is shown that solutions to Einstein’s field equations with positive cosmological constant can include non-zero rest-mass fields which coexist with and travel unimpeded across a smooth conformal boundary. This is exemplified by the coupled Einstein-massive-scalar field equations for which the mass m is related to the cosmological constant λ by the relation 3m2 = 2 λ. Cauchy data for the conformal field equations can in this case be prescribed on the (compact, space-like) conformal boundary J+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{J}^{+}}$$\end{document}. Their developments backwards in time induce a set of standard Cauchy data on space-like slices for the Einstein-massive-scalar field equations which is open in the set of all Cauchy data for this system.
引用
收藏
页码:2215 / 2238
页数:23
相关论文
共 17 条
[1]  
Beyer F(2009)Non-genericity of the Nariai solutions: I. Asymptotics and spatially homogeneous perturbations Class. Quantum Grav. 26 235015-828
[2]  
Choquet-Bruhat Y(2007)The constraint equations for the Einstein-scalar field system on compact manifolds Class. Quantum Grav. 24 809-421
[3]  
Isenberg J(1981)The asymptotic characteristic initial value problem for Einstein’s vacuum field equations as an initial value problem for a first-order quasilinear symmetric hyperbolic system Proc. Roy. Soc. Lond. A 378 401-117
[4]  
Pollack D(1986)Existence and structure of past asymptotically simple solution of Einstein’s field equations with positive cosmological constant J. Geom. Phys. 3 101-609
[5]  
Friedrich H.(1986)On the existence of n-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure Commun. Math. Phys. 107 587-345
[6]  
Friedrich H.(1991)On the global existence and the asymptotic behaviour of solutions to the Einstein–Maxwell–Yang–Mills equations J. Differ. Geom. 34 275-2751
[7]  
Friedrich H.(1977)Cosmological event horizons, thermodynamics, and particle creation Phys. Rev. D 15 2738-203
[8]  
Friedrich H.(2013)On CCC-predicted concentric low-variance circles in the CMB sky Eur. Phys. J. Plus 128 22-208
[9]  
Gibbons G.W.(2013)A conformal approach to the analysis of the non-linear stability of radiation cosmologies Ann. Phys. 328 1-534
[10]  
Hawking S.W.(1965)Zero rest-mass fields including gravitation: asymptotic behaviour Proc. Roy. Soc. Lond. A 284 159-undefined