Eigen-Decomposition of Quaternions

被引:0
|
作者
Roger M. Oba
机构
[1] Naval Research Laboratory,Acoustics Division, Code 7167
来源
关键词
Biquaternion; Eigenvectors; Idempotent; Nilpotent; Quaternion function theory; 11R52; 15A18; 30G35;
D O I
暂无
中图分类号
学科分类号
摘要
This paper introduces biquaternion eigen-decomposition theory (via Peirce decomposition) with respect to a selected quaternion with a non-zero vector part. The eigen-decomposition allows evaluation of polynomials and power series with real coefficients as functions of quaternions. This extension of analytic functions to functions of quaternions requires only standard complex function evaluation. The theory also applies to quaternion rotations. The theory uses biquaternion calculations indicated by matrix methods via the algebraic isomorphism between Hamilton’s biquaternions and appropriate 4×4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\times 4$$\end{document} complex matrices. The isomorphism preserves algebraic structure. In particular, the left and right biquaternion multiplication by the selected quaternion maps to left and right matrix multiplication, respectively. This unifies the representation of the left and right quaternion multiplication as a linear map into a single matrix form. This matrix, as a linear operator, acts on matrices, so that the eigenvectors have matrix form that maps into the biquaternions. Use of an alternate quaternion basis results in a similarity transform of the representation matrix, preserving eigenvalues across change of basis. The similarity transform allows simple eigenvector calculation. The matrix for the selected quaternion has two identical, complex conjugate pairs of eigenvalues. Each pair corresponds to two complex conjugate pairs of eigenvector biquaternions, an idempotent pair and a nilpotent pair. Idempotent and nilpotent eigenvectors correspond to the commuting and non-commuting parts, respectively, of quaternion multiplication.
引用
收藏
相关论文
共 50 条
  • [1] Eigen-Decomposition of Quaternions
    Oba, Roger M.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2018, 28 (05)
  • [2] Isomorphism of balance theory and Eigen-decomposition
    Kosugi, K
    Fujisawa, T
    Fujihara, T
    SOCIOLOGICAL THEORY AND METHODS, 2004, 19 (01) : 87 - 100
  • [3] A linear metric reconstruction by complex eigen-decomposition
    Pohang Univ. of Sci. and Technol., Pohang, Korea, Republic of
    IEICE Transactions on Information and Systems, 2001, E84-D (12) : 1626 - 1632
  • [4] SWIPT THROUGH EIGEN-DECOMPOSITION OF MIMO CHANNELS
    Timotheou, Stelios
    Krikidis, Ioannis
    2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 1994 - 1998
  • [5] A linear metric reconstruction by complex eigen-decomposition
    Seo, Y
    Hong, KS
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2001, E84D (12): : 1626 - 1632
  • [6] A principal component network for generalized Eigen-decomposition
    Xu, DX
    Principe, JC
    Wu, HC
    IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, 1998, : 849 - 853
  • [7] Approximate normalized cuts without Eigen-decomposition
    Jia, Hongjie
    Ding, Shifei
    Du, Mingjing
    Xue, Yu
    INFORMATION SCIENCES, 2016, 374 : 135 - 150
  • [8] A sparse eigen-decomposition estimation in semiparametric regression
    Zhu, Li-Ping
    Yu, Zhou
    Zhu, Li-Xing
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (04) : 976 - 986
  • [9] Solving the heterogeneous positioning problem via eigen-decomposition
    Juang, J. -C.
    ELECTRONICS LETTERS, 2008, 44 (06) : 432 - 433
  • [10] Using eigen-decomposition method for weighted graph matching
    Zhao, Guoxing
    Lu, Bin
    Tang, Jin
    Ma, Jinxin
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS: WITH ASPECTS OF THEORETICAL AND METHODOLOGICAL ISSUES, 2007, 4681 : 1283 - +