Infinitely many bound state solutions of Choquard equations with potentials

被引:0
作者
Xiaonan Liu
Shiwang Ma
Xu Zhang
机构
[1] Nankai University,School of Mathematical Science and LPMC
[2] Central South University,School of Mathematics and Statistics
来源
Zeitschrift für angewandte Mathematik und Physik | 2018年 / 69卷
关键词
Choquard equation; Bound state; Infinitely many solutions; Primary: 35J20; Secondary: 35J65;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the following Choquard equation -Δu+a(x)u=(Iα∗|u|p)|u|p-2u,x∈RN,u(x)→0,|x|→+∞,(CH)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} - \Delta u+a(x)u=(I_\alpha *|u|^p)|u|^{p-2}u, &{}x\in {\mathbb {R}}^N,\\ u(x)\rightarrow 0,&{}|x|\rightarrow +\infty , \end{array}\right. {\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad (\hbox {CH})} \end{aligned}$$\end{document}where N≥3,Iα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 3, I_\alpha $$\end{document} is a Riesz potential, N+αN<p<N+αN-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{N+\alpha }{N}<p<\frac{N+\alpha }{N-2}$$\end{document} and a(x) is a given nonnegative potential function. Under some assumptions of asymptotic properties on a(x) at infinity and according to a concentration compactness argument, we obtain infinitely many solutions of (CH), whose energy can be arbitrarily large.
引用
收藏
相关论文
共 42 条
  • [1] Ackermann N(2004)On a periodic Schrödinger equation with nonlocal superlinear part Math. Z. 248 423-443
  • [2] Alves CO(2016)Multi-bump solutions for Choquard equation with deepening potential well Calc. Var. 55 48-168
  • [3] Nobrega A(2005)Infinitely many bound states for some nonlinear scalar field equations Calc. Var. Partial Differ. Equ. 23 139-248
  • [4] Yang M-B(2012)Multiple solutions to a magnetic nonlinear Choquard equation Z. Angew. Math. Phys. 63 233-15
  • [5] Cerami G(2013)Positive and sign changing solutions to a nonlinear Choquard equation J. Math. Anal. Appl. 407 1-15
  • [6] Devillanova G(2013)Positive and sign changing solutions to a nonlinear Choquard equation J. Math. Anal. Appl. 407 1-1280
  • [7] Solimini S(2002)Concentration estimates and multiple solutions to elliptic problems at critical growth Adv. Differ. Equ. 7 1257-135
  • [8] Cingolani S(2016)Nodal solutions for the Choquard equation J. Funct. Anal. 271 107-135
  • [9] Clapp M(2016)Nodal solutions for the Choquard equation J. Funct. Anal. 271 107-105
  • [10] Secchi S(1977)Existence and Uniqueness of the Minimizing Solution of Choquard's Nonlinear Equation Studies in Applied Mathematics 57 93-1072