Chronic kidney disease prediction using machine learning techniques

被引:0
|
作者
Dibaba Adeba Debal
Tilahun Melak Sitote
机构
[1] Madda Walabu University,Department of Information Science, College of Computing
[2] Adama Science and Technology University,Department of Computer Science and Engineering, School of Electrical Engineering and Computing
来源
Journal of Big Data | / 9卷
关键词
Chronic Kidney Disease (CKD); Machine Learning; Random Forest (RF); Support Vector Machine (SVM);
D O I
暂无
中图分类号
学科分类号
摘要
Goal three of the UN’s Sustainable Development Goal is good health and well-being where it clearly emphasized that non-communicable diseases is emerging challenge. One of the objectives is to reduce premature mortality from non-communicable disease by third in 2030. Chronic kidney disease (CKD) is among the significant contributor to morbidity and mortality from non-communicable diseases that can affected 10–15% of the global population. Early and accurate detection of the stages of CKD is believed to be vital to minimize impacts of patient’s health complications such as hypertension, anemia (low blood count), mineral bone disorder, poor nutritional health, acid base abnormalities, and neurological complications with timely intervention through appropriate medications. Various researches have been carried out using machine learning techniques on the detection of CKD at the premature stage. Their focus was not mainly on the specific stages prediction. In this study, both binary and multi classification for stage prediction have been carried out. The prediction models used include Random Forest (RF), Support Vector Machine (SVM) and Decision Tree (DT). Analysis of variance and recursive feature elimination using cross validation have been applied for feature selection. Evaluation of the models was done using tenfold cross-validation. The results from the experiments indicated that RF based on recursive feature elimination with cross validation has better performance than SVM and DT.
引用
收藏
相关论文
共 50 条
  • [1] Chronic kidney disease prediction using machine learning techniques
    Debal, Dibaba Adeba
    Sitote, Tilahun Melak
    JOURNAL OF BIG DATA, 2022, 9 (01)
  • [2] Machine Learning Techniques for Chronic Kidney Disease Risk Prediction
    Dritsas, Elias
    Trigka, Maria
    BIG DATA AND COGNITIVE COMPUTING, 2022, 6 (03)
  • [3] Chronic Kidney Disease Prediction Using Machine Learning
    Kaur, Chamandeep
    Kumar, M. Sunil
    Anjum, Afsana
    Binda, M. B.
    Mallu, Maheswara Reddy
    Al Ansari, Mohammed Saleh
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2023, 14 (02) : 384 - 391
  • [4] Machine Learning Algorithms as a Boon for Chronic Kidney Disease Prediction
    Dayma, Reshma
    Patel, Sajid
    Patel, Dhruti
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (03) : 499 - 508
  • [5] Chronic Kidney Disease Prediction Using Machine Learning Methods
    Ekanayake, Imesh Udara
    Herath, Damayanthi
    MERCON 2020: 6TH INTERNATIONAL MULTIDISCIPLINARY MORATUWA ENGINEERING RESEARCH CONFERENCE (MERCON), 2020, : 260 - 265
  • [6] Chronic Kidney Disease Prediction using Machine Learning Ensemble Algorithm
    Nikhila
    2021 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, AND INTELLIGENT SYSTEMS (ICCCIS), 2021, : 476 - 480
  • [7] Chronic kidney disease prediction using machine learning techniques: a comparative study of feature selection methods with SMOTE and SHAP
    Gogoi, Prokash
    Valan, J. Arul
    MULTISCALE AND MULTIDISCIPLINARY MODELING EXPERIMENTS AND DESIGN, 2025, 8 (04)
  • [8] Prediction of metabolic syndrome and its associated risk factors in patients with chronic kidney disease using machine learning techniques
    Bittencourt, Jalila Andrea Sampaio
    Sousa Junior, Carlos Magno
    Santana, Ewaldo Eder Carvalho
    de Moraes, Yuri Armin Crispim
    Carneiro, Erika Cristina Ribeiro de Lima
    Fontes, Ariadna Jansen Campos
    das Chagas, Lucas Almeida
    Melo, Naruna Aritana Costa
    Pereira, Cindy Lima
    Penha, Margareth Costa
    Pires, Nilviane
    Araujo Junior, Edward
    Barros Filho, Allan Kardec Duailibe
    Nascimento, Maria do Desterro Soares Brandao
    JORNAL BRASILEIRO DE NEFROLOGIA, 2024, 46 (04):
  • [9] Prediction of Chronic Kidney Disease-A Machine Learning Perspective
    Chittora, Pankaj
    Chaurasia, Sandeep
    Chakrabarti, Prasun
    Kumawat, Gaurav
    Chakrabarti, Tulika
    Leonowicz, Zbigniew
    Jasinski, Michal
    Jasinski, Lukasz
    Gono, Radomir
    Jasinska, Elzbieta
    Bolshev, Vadim
    IEEE ACCESS, 2021, 9 : 17312 - 17334
  • [10] Heart Disease Prediction Using Machine Learning Techniques
    Sadar, Uzama
    Agarwal, Parul
    Parveen, Suraiya
    Jain, Sapna
    Obaid, Ahmed J.
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON DATA SCIENCE, MACHINE LEARNING AND APPLICATIONS, VOL 1, ICDSMLA 2023, 2025, 1273 : 551 - 560