Optimally convergent mixed finite element methods for the time-dependent 2D/3D stochastic closed-loop geothermal system with multiplicative noise

被引:1
作者
Gao, Xinyue [1 ]
Qin, Yi [1 ]
Li, Jian [1 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Math & Data Sci, Xian 710016, Shaanxi, Peoples R China
关键词
3D Stochastic closed-loop geothermal system; Multiplicative noise; Helmholtz decomposition; NAVIER-STOKES EQUATIONS; VARIATIONAL MULTISCALE METHOD; NATURAL-CONVECTION; VOLUME METHODS; MODEL; STABILITY; ALGORITHM; SCHEMES; FLUID; FLOW;
D O I
10.1007/s10444-024-10122-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a new time-dependent 2D/3D stochastic closed-loop geothermal system with multiplicative noise is developed and studied. This model considers heat transfer between the free flow in the pipe region and the porous media flow in the porous media region. Darcy's law and stochastic Navier-Stokes equations are used to control the flows in the pipe and porous media regions, respectively. The heat equation is coupled with the flow equation to describe the heat transfer in these both regions. In order to avoid sub-optimal convergence, a new mixed finite element method is proposed by using the Helmholtz decomposition that drives the multiplicative noise. Then, the stability of the proposed method is proved, and we obtain the optimal convergence order o(Delta t12+h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(\Delta t<^>{\frac{1}{2}}+h)$$\end{document} of global error estimation. Finally, numerical results indicate the efficiency of the proposed model and the accuracy of the numerical method.
引用
收藏
页数:48
相关论文
共 56 条
  • [1] A COUPLED MULTIPHYSICS MODEL AND A DECOUPLED STABILIZED FINITE ELEMENT METHOD FOR THE CLOSED-LOOP GEOTHERMAL SYSTEM
    Al Mahbub, Md Abdullah
    He, Xiaoming
    Nasu, Nasrin Jahan
    Qiu, Changxin
    Wang, Yifan
    Zheng, Haibiao
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (04) : B951 - B982
  • [2] STOCHASTIC NAVIER-STOKES EQUATIONS
    BENSOUSSAN, A
    [J]. ACTA APPLICANDAE MATHEMATICAE, 1995, 38 (03) : 267 - 304
  • [3] Bensoussan A., 1973, J FUNCT ANAL, V13, P195
  • [4] Strong L2 convergence of time numerical schemes for the stochastic two-dimensional Navier-Stokes equations
    Bessaih, Hakima
    Millet, Annie
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (04) : 2135 - 2167
  • [5] 3-D simulation of heat transfer rate in geothermal pile-foundation heat exchangers with spiral pipe configuration
    Bezyan, Behrad
    Porkhial, Soheil
    Mehrizi, Abbasali Aboui
    [J]. APPLIED THERMAL ENGINEERING, 2015, 87 : 655 - 668
  • [6] 2 FAMILIES OF MIXED FINITE-ELEMENTS FOR 2ND ORDER ELLIPTIC PROBLEMS
    BREZZI, F
    DOUGLAS, J
    MARINI, LD
    [J]. NUMERISCHE MATHEMATIK, 1985, 47 (02) : 217 - 235
  • [7] Finite-element-based discretizations of the incompressible Navier-Stokes equations with multiplicative random forcing
    Brzezniak, Zdzislaw
    Carelli, Erich
    Prohl, Andreas
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (03) : 771 - 824
  • [8] Bundschuh J., 2010, Introduction to the Numerical Modeling of Groundwater and Geothermal Systems: Fundamentals of Mass, Energy and Solute Transport in Poroelastic Rocks, DOI DOI 10.1201/B10499
  • [9] Feedback stabilization of a thermal fluid system with mixed boundary control
    Burns, John A.
    He, Xiaoming
    Hu, Weiwei
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (11) : 2170 - 2191
  • [10] Cao LL, 2022, J SCI COMPUT, V90, DOI [10.1007/s10915-021-01674-X, 10.1007/s10915-021-01674-x]